Therapeutic Applications of Novel Drug Delivery Systems of Liquorice: An Updated Review on Recent Advancements
Drug Delivery Systems of Liquorice
Sažetak
In recent times, individuals are focusing more on natural substances, primarily due to their safety and non-toxicity. Also, there is an increasing demand by industries for the phytoconstituents that might be incorporated in pharmaceuticals, cosmetics, dietary products and nutraceuticals. Liquorice is one of the widely used Chinese herb since ancient times due to its medicinal properties. It exhibits broad spectrum biological activities such as anti-inflammatory, immunomodulatory, anti-oxidant, anti-cancer, anti-diabetic, anti-microbial properties, and is used in the treatment of different diseases such as cancer, inflammation, viral infections, cardiovascular and respiratory disorders. Different novel formulations such as nanoparticles, microparticles, liposomes, nanomicells and self-emulsifying drug delivery system are developed that overcome major limitations of liquorice including its low solubility, stability and less bioavailability. In this review, we discuss about liquorice, its historical background, pharmacokinetics, therapeutic applications, its different mechanism of actions, with major emphasis on liquorice encapsulated novel formulations (nanoparticles, nanomicelles, liposomes, niosomes, microparticles, microspheres, self-nanoemulsifying system, self-micro-emulsifying system). Also included brief description of pre-clinical studies and liquorice containing marketed products. Liquorice, a prominent constituent of different dietary products, has aroused the interestof many researchers because of its anti-proliferative capacity, tumour microenvironment manipulation and autophagy activation in numerous cancer types. Nanotechnology-based techniques for enhanced solubilization, stability and targeted drug delivery have been tested by formulation scientists. Liquorice is enclosed in different novel carriers and encapsulated liquorice displayed enhanced stability, solubility, high encapsulation efficiency, controlled drug release,and extended circulation time period.
Reference
Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MBP. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother Res. 2018;32:2323-39. doi: 10.1002/ptr.6178.
Hosseinzadeh H, Nassiri‐Asl M. Pharmacological effects of Glycyrrhiza spp. and its bioactive constituents: update and review. Phytother Res. 2015;29:1868-86. doi: 10.1002/ptr.5487.
Gumpricht E, Dahl R, Devereaux MW, Sokol RJ. Licorice compounds glycyrrhizin and 18β-glycyrrhetinic acid are potent modulators of bile acid-induced cytotoxicity in rat hepatocytes. Int J Biol Chem. 2005;280:10556-63. doi: 10.1074/jbc.M411673200.
Bhardwaj S, Kaur J, Kaur A, Kaur S, Jindal A, Singh, I. Herbal bioactives for the management of influenza viral infection. Int J Infect Dis. 2022;85-99. doi: 10.1002/9781119818779.ch4.
Tanaka A, Horiuchi M, Umano K, Shibamoto T. Antioxidant and anti‐inflammatory activities of water distillate and its dichloromethane extract from licorice root (Glycyrrhiza uralensis) and chemical composition of dichloromethane extract. J Sci Food Agric. 2008;88:1158-65. doi: 10.1002/jsfa.3191.
Takhshid MA, Mehrabani D, Ai J, Zrepoor M. The healing effect of licorice extract in acetic acid-induced ulcerative colitis in rat model.Comp Clin Pathol. 2012;21:1139-44. doi: 10.1007/s00580-011-1249-9.
Rahnama M, Mehrabani D, Japoni S, Edjtehadi M, Firoozi MS. The healing effect of licorice (Glycyrrhiza glabra) on Helicobacter pylori infected peptic ulcers. J Res Med Sci. 2013;18:532.
Tao W, Dong Y, Su Q, Wang H, Chen Y, Xue W, et al. Liquiritigenin reverses depression-like behavior in unpredictable chronic mild stress-induced mice by regulating PI3K/Akt/mTOR mediated BDNF/TrkB pathway. Behav Brain Res. 2016;308:177-86. doi: 10.1016/j.bbr.2016.04.039.
Wahab S, Annadurai S, Abullais SS, Das G, Ahmad W, Ahmad MF, et al. Glycyrrhiza glabra (Licorice): A comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology. Plant J. 2021;10:2751. doi: 10.3390/plants10122751.
Nazari S, Rameshrad M, Hosseinzadeh H. Toxicological effects of Glycyrrhiza glabra (licorice): a review. Int J Phytother. 2017;31:1635-50. doi: 10.1002/ptr.5893.
Liu J, Banuvar S, Viana M, Barengolts E, Chen SN, Pauli GF, et al. Pharmacokinetic interactions of a licorice dietary supplement with cytochrome p450 enzymes in female participants. Drug Metab Dispos. 2023;51:199-204. doi: 10.1124/dmd.122.001050.
El-Saber Batiha G, Magdy Beshbishy A, El-Mleeh A, Abdel-Daim M, Prasad Devkota H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules. 2022;10:352. doi: 10.3390/biom10030352.
Sharma T, Sharma P, Chandel P, Singh S, Sharma N, Naved T, et al. Circumstantial insights into the potential of traditional Chinese medicinal plants as a therapeutic approach in rheumatoid arthritis. Curr Pharm Des. 2022;28:2140-9. doi: 10.2174/1381612828666220324124720.
Grienke U, Braun H, Seidel N, KirchmairJ, Richter M, Krumbholz A, et al. Computer-guided approach to access the anti-influenza activity of licorice constituents. J Nat Prod. 2014;77:563-570. doi: 10.1021/np400817j.
Dastagir G, Rizvi MA. Glycyrrhiza glabra L. (Liquorice). Pak J Pharm Sci. 2016;29:1727-33.
Puri V, Nagpal M, Singh I, Singh M, Dhingra GA, Huanbutta K, et al. A Comprehensive review on nutraceuticals: therapy support and formulation challenges. Nutrients. 2022;14:4637. doi: 10.3390/nu14214637.
Bisht D, Rashid M, Arya RKK, Kumar D, Chaudhary SK, Rana VS, et al. Revisiting liquorice (Glycyrrhiza glabra L.) as anti-inflammatory, antivirals and immunomodulators: Potential pharmacological applications with mechanistic insight. Phytomedicine. 2022;2:100206. doi: 10.1016/j.phyplu.2021.100206.
Ayeka PA, Bian Y, Githaiga PM, Zhao Y. The immunomodulatory activities of licorice polysaccharides (Glycyrrhiza uralensis Fisch.) in CT 26 tumor-bearing mice. BMC Complement Altern Med. 2017;17:1-9. doi: 10.1186/s12906-017-2030-7.
Kaur P, Makanjuola VO, Arora R, Singh B, Arora S. Immunopotentiating significance of conventionally used plant adaptogens as modulators in biochemical and molecular signalling pathways in cell mediated processes. Biomed Pharmacother. 2017;95:1815-29. doi: 10.1016/j.biopha.2017.09.081.
Bailly C, Vergoten G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome. Pharmacol Ther. 2020;214:107618. doi: 10.1016/j.pharmthera.2020.107618.
Fiore C, Eisenhut M, Krausse R, Ragazzi E, Pellati D, Armanini D, et al. Antiviral effects of Glycyrrhiza species. Phytother Res. 2008;22:141-8. doi: 10.1002/ptr.2295.
Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res 2008;22:709-24. doi: 10.1002/ptr.2362.
Wang KL, Yu YC, Hsia SM. Perspectives on the Role of Isoliquiritigenin in Cancer. Cancers. 2021;13:115. doi: 10.3390/cancers13010115.
Zhang Q, Ye M. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). J Chromatogr A. 2009;1216:1954-69. doi: 10.1016/j.chroma.2008.07.072.
Alrushaid S, Davies NM, Martinez SE, Sayre CL. Pharmacological characterization of liquiritigenin, a chiral flavonoid in licorice. Res Pharm Sci. 2016;11:355-65. doi: 10.4103/1735-5362.192484.
Armanini D, Nacamulli D, Francini-Pesenti F, Battagin G, Ragazzi E, Fiore C. Glycyrrhetinic acid, the active principle of licorice, can reduce the thickness of subcutaneous thigh fat through topical application. Steroids. 2005;70:538-42. doi: 10.1016/j.steroids.2005.01.007.
Tay KC, Tan LT, Chan CK, Hong SL, Chan KG, Yap WH, et al. Formononetin: a review of its anticancer potentials and mechanisms. Front Pharmacol. 2019;10:820. doi: 10.3389/fphar.2019.00820.
Zang Y. Pharmacological Activities of coumarin compounds in licorice: a review. Nat Prod Commun. 2020;15. doi: 10.1177/1934578X20953954.
Aipire A, Mahabati M, Cai S, Wei X, Yuan P, Aimaier A, et al. The immunostimulatory activity of polysaccharides from Glycyrrhiza uralensis. Peer J. 2020;8:e8294. doi: 10.7717/peerj.8294.
Kim HJ, Seo JY, Suh HJ, Lim SS, Kim JS. Antioxidant activities of licorice-derived prenylflavonoids. Nutr Res Pract. 2012;6:491-8. doi: 10.4162/nrp.2012.6.6.491.
Mamedov NA, Egamberdieva D. Phytochemical constituents and pharmacological effects of licorice: a review. Plant Human Health. 2019;3:1–21. doi: 10.1007/978-3-030-04408-4_1.
Wang J, Zhang YS, Thakur K, Hussain SS, Zhang JG, Xiao GR, et al. Licochalcone A from licorice root, an inhibitor of human hepatoma cell growth via induction of cell apoptosis and cell cycle arrest. Food Chem Toxicol. 2018;120:407-17. doi: 10.1016/j.fct.2018.07.044.
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019;12:908-31. doi: 10.1016/j.arabjc.2017.05.011.
Kumari S, Goyal A, Garg M. Phytoconstituents based novel nano-formulations: an approach. ECS Transactions. 2022;107:7365. doi: 10.1149/10701.7365ecst.
Singh V, Kumar A. Antioxidant Potential of Glycyrrhiza glabra L. roots: In-Vitro Evidences. J Pharm Technol Res. 2022;8:9-13. doi: 10.15415/jptrm.2020.81002.
Ealia SAM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. Mater Sci Eng. 2017;263:032019. doi: 10.1088/1757-899X/263/3/032019.
Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, et al. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. J Nanomater. 2022;12:457. doi: 10.3390/nano12030457.
Bavanilatha M, Yoshitha L, Nivedhitha S, Sahithya S. Bioactive studies of TiO2 nanoparticles synthesized using Glycyrrhiza glabra. Biocatal Agric Biotechnol. 2019;19:101131. doi: 10.1016/J.BCAB.2019.101131.
Sreelakshmy V, Deepa MK, Mridula P. Green synthesis of silver nanoparticles from Glycyrrhiza glabra root extract for the treatment of gastric ulcer. J Dev Drugs. 2016;5:152. doi: 10.4172/2329-6631.1000152.
Huo Y, Singh P, Kim YJ, Soshnikova V, Kang J, Markus J, et al. Biological synthesis of gold and silver chloride nanoparticles by Glycyrrhiza uralensis and in vitro applications. Artif Cells Nanomed Biotechnol. 2018;46:303-12. doi: 10.1080/21691401.2017.1307213.
Cai Z, Dai Q, Guo Y, Wei Y, Wu M, Zhang H. Glycyrrhiza polysaccharide-mediated synthesis of silver nanoparticles and their use for the preparation of nanocomposite curdlan antibacterial film. Int J Biol Macromol. 2019;141:422-30. doi: 10.1016/j.ijbiomac.2019.09.018.
Khandelwal R, Kachhawa C, Arora SK, Ratan JK, Garg R. A Sustainable method for synthesis of silver nanoparticles by using Glycyrrhiza glabra extract. Nanotechnol Environ Eng. 2021;6:58. doi: 10.1007/s41204-021-00154-9.
Kalugendo E, Kousalya P. Synthesis of silver nanoparticles using Moringa oleifera seeds, Glycyrrhiza glabra stems, and its anti-methicillin-resistant Staphylococcus aureus activity.Sci Synth. 2019;12:368-70. doi: 10.22159/ajpcr.2019.v12i2.28863.
Mohammed HA, AminMA, Zayed G, Hassan Y, El-Mokhtar M, Saddik MS. In vitro and in vivo synergistic wound healing and anti-methicillin-resistant Staphylococcus aureus (MRSA) evaluation of liquorice-decorated silver nanoparticles. J Antibiot. 2023;76:291-300. doi: 10.1038/s41429-023-00603-4.
Wang Z, Zhao X, Zu Y, Wu W, Li Y, Guo Z, et al. Licorice flavonoids nanoparticles prepared by liquid antisolvent re-crystallization exhibit higher oral bioavailability and antioxidant activity in rat. J Func Food. 2019;57:190–201. doi: 10.1016/j.jff.2019.04.010.
Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kim KH, Kumar S. Evaluation of anti-diabetic activity of glycyrrhizin-loaded nanoparticles in nicotinamide-streptozotocin-induced diabetic rats. Eur J Pharm Sci. 2017;106:220-30. doi: 10.1016/j.ejps.2017.05.068.
Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.J Control Release. 2021;332:312-36. doi: 10.1016/j.jconrel.2021.02.031.
Perumal S, Atchudan R, Lee W. A review of polymeric micelles and their applications. Polymers. 2022;14:2510. doi: 10.3390/polym14122510.
Jhaveri AM, Torchilin VP. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol. 2014;5:77. doi: 10.3389/fphar.2014.00077.
Song K, Yan M, Li M, Geng Y, Wu X. Preparation and in vitro–in vivo evaluation of novel ocular nanomicelle formulation of thymol based on glycyrrhizin. Colloids Surf B. 2020;194:111157. doi: 10.1016/j.colsurfb.2020.111157.
Shen C, Shen B, Zhu J, Wang J, Yuan H, Li X. Glycyrrhizic acid-based self-assembled micelles for improving oral bioavailability of paeoniflorin. Drug Dev Ind Pharm. 2021;47:207-14. doi: 10.1080/03639045.2020.1862178.
Wang Q, Wei C, Weng W, Bao R, Adu-Frimpong M, Toreniyazov E, et al. Enhancement of oral bioavailability and hypoglycemic activity of liquiritin-loaded precursor liposome. Int J Pharm. 2021;592:120036. doi: 10.1016/j.ijpharm.2020.120036.
Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules. 2022;27: 1372. doi: 10.3390/molecules27041372.
Farooque F, Wasi M, Mughees MM. Liposomes as drug delivery system: an updated review. J Drug Deliv Ther. 2021;11:149-58. doi: 10.22270/jddt.v11i5-S.5063.
Kim SJ, Kwon SS, Jeon SH, Yu ER, Park SN. Enhanced skin delivery of liquiritigenin and liquiritin loaded liposome in hydrogel complex system. Int J Cosmet Sci. 2014;36:553-60. doi: 10.1111/ics.12156.
Viswanathan V, Pharande R, Bannalikar A, Gupta P, Gupta U, et al. Inhalable liposomes of Glycyrrhiza glabra extract for use in tuberculosis: formulation, in vitro characterization, in vivo lung deposition, and in vivo pharmacodynamic studies. Drug Dev Ind Pharm. 2019;45:11-20. doi: 10.1080/03639045.2018.1513025.
Akhlaghi M, Eftekharivash L, Taebpour M, Afereydoon S, Ebrahimpour M, Mehrizi MZ, et al. Improving the therapeutic performance of glycyrrhiza glabra hydroalcoholic extract using liposomal nano-carriers and their characterization. Dis Diagn. 2022;11:39-48. doi: 10.34172/ddj.2022.09.
Castangia I, Caddeo C, Manca ML, Casu L, Latorre AC, Díez-Sales O, et al. Delivery of liquorice extract by liposomes and hyalurosomes to protect the skin against oxidative stress injuries. Carbohyd Polym. 2015;134:657-63. doi: 10.1016/j.carbpol.2015.08.037.
Barone A, Cristiano MC, Cilurzog F, Locatelli M, Iannotta D, Di Marzio L, et al. Ammonium glycyrrhizate skin delivery from ultradeformable liposomes: A novel use as an anti-inflammatory agent in topical drug delivery. Colloids Surf B. 2020;193:111152. doi: 10.1016/j.colsurfb.2020.111152.
Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: A review on niosomal research in the last decade. J Drug Deliv Sci Tech. 2020;56:101581. doi: 10.1016/j.jddst.2020.101581.
Ag Seleci D, Seleci M, Walter JG, Stahl F, Scheper T. Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J Nanomater. 2016;3:2016. doi: 10.1155/2016/7372306.
Gharbavi M, Amani J, Kheiri-Manjili H, Danafar H, Sharafi A. Niosome: a promising nanocarrier for natural drug delivery through blood-brain barrier.Adv Pharmacol Sci 2018;2018:6847971. doi:10.1155/2018/6847971.
Akhlaghi M, Taebpour M, Lotfabadi NN, Naghib SM, Jalili N, Farahmand L, et al. Synthesis and characterization of smart stimuli-responsive herbal drug-encapsulated nanoniosome particles for efficient treatment of breast cancer. Nanotechnol Rev. 2022;11:1364-85. doi: 10.1515/ntrev-2022-0080.
Marianecci C, Rinaldi F, Mastriota M, Pieretti S, Trapasso E, Paolino D, et al. Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: human and murine models. J Control Release. 2012;164:17-25. doi: 10.1016/j.jconrel.2012.09.018.
Marianecci C, Rinaldi F, Di Marzio L, Mastriota M, Pieretti S, Celia C, et al. Ammonium glycyrrhizinate-loaded niosomes as a potential nanotherapeutic system for anti-inflammatory activity in murine models. Int J Nanomedicine. 2014;9:635-51. doi: 10.2147/IJN.S55066.
Jyothi N, Harekrishna Roy N, Lakshmi Prasanhti V, Sri Vajrapriya A. Brief review of microparticle drug delivery system. World J Pharm Sci. 2016;5:701-12.
Padalkar AN, Shahi SR, Thube MW. Microparticles: an approach for betterment of drug delivery system. Int J Pharm Res Dev. 2011;3:99-115.
Kohane DS. Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng. 2007;96:203-9. doi: 10.1002/bit.21301.
Lengyel M, Kállai-Szabó N, Antal V, Laki AJ, Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci Pharm. 2019;87:20. doi: 10.3390/scipharm87030020.
Sui X, Wei W, Yang L, Zu Y, Zhao C, Zhang L, et al. Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process. Int J Pharm. 2012;423:471-9. doi: 10.1016/j.ijpharm.2011.12.007.
Jan R, Gani A, Dar MM, Bhat NA. Bioactive characterization of ultrasonicated ginger (Zingiber officinale) and licorice (Glycyrrhiza Glabra) freeze dried extracts. Ultrason Sonochem. 2022;88:106048. doi: 10.1016/j.ultsonch.2022.106048.
Salvi N, Choudhary GP. Formulation and development of microparticles containing herbal plant extract. J Drug Deliv Ther. 2019;9:89-92.
Neelima S, Pratap CG. Development and characterization of polymeric microparticles containing Murrayakoenigii leaves extract for management of diabetes mellitus. J Pharmacogn Phytochem. 2019;8:2438-42.
Al-Shdefat R, Ali BE, Anwer MK, Fayed MH, Alalaiwe A, Soliman GA. Sildenafil citrate-Glycyrrhizin/Eudragit binary spray dried microparticles: A sexual behavior studies on male rat. J Drug Deliv Sci Technol. 2016;36:141-9. doi: 10.1016/j.jddst.2016.10.004.
Chaudhari A, Jadhav KR, Kadam VJ. An overview: Microspheres as a nasal drug delivery system.Int J Pharm Sci. 2010;5:8-17.
Murtaza G, Ahamd M, Akhtar N, Rasool F. A comparative study of various microencapsulation techniques: Effect of polymer viscosity on microcapsule characteristics. Pak J Pharma 2009;22:291-300.
Vani M. Formulation and evaluation of sustained release microspheres of acetazolamide by solvent evaporation technique. IJPRE. 2009;6:1-8.
Harwansh RK, Deshmukh R. Formulation and evaluation of sodium alginate and guar gum based glycyrrhizin loaded mucoadhesive microspheres for management of peptic ulcer. Indian J Pharm Educ Res. 2021;55:728-37. doi:10.5530/ijper.55.3.145.
Visht S, Kulkarni GT. Studies on the preparation and in vitro-in vivo evaluation of mucoadhesive microspheres of glycyrrhetinic acid isolated from liquorice. Bangladesh Pharm J. 2015;18:30-7. doi: 10.3329/bpj.v18i1.23511.
Soni GC, Prajapati SK, Chaudhri N. Self nanoemulsion: advance form of drug delivery system.World J Pharm Sci. 2014;3:410-36.
Gupta P, Kumar P, Sharma NK, Pawar Y, Gupta J. Self nano emulsifying drug delivery system: a strategy to improve oral bioavailability. World J Pharm Sci. 2014;3:506-12.
Singh B, Bandopadhyay S, Kapil R, Singh R, Katare OP. Self-emulsifying drug delivery systems (SEDDS): formulation development, characterization, and applications. Crit Rev Ther Drug Carr Syst. 2009;26:427-521. doi: 10.1615/critrevtherdrugcarriersyst.v26.i5.10.
Shafiq-un-Nabi S, Shakeel F, Talegaonkar S, Ali J, Baboota S, Ahuja A, et al. Formulation development and optimization using nanoemulsion technique: a technical note. AAPS Pharm Sci Tech. 2007;8:E12-E17. doi: 10.1208/pt0802028.
Anton N, Benoit JP, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates—a review. J Control Release. 2008;128:185-99. doi: 10.1016/j.jconrel.2008.02.007.
Wang Q, Zhang K, Weng W, Chen L, Wei C, Bao R, et al. Liquiritin-hydroxypropyl-beta cyclodextrin inclusion complex: preparation, characterization, bioavailability and antitumor activity evaluation. J Pharm Sci. 2022;111:2083-92. doi: 10.1016/j.xphs.2022.03.021.
Upadhyay P, Farooqui H. Optimization and characterization of self nano emulsifying drug delivery system loaded with 18-β glycerrhetinic acid. J Pharm Res Int. 2021;33:304-24. doi: 10.9734/jpri/2021/v33i59A34275.
Cao M, Wang Y, Jing H, Wang Z, Meng Y, Geng Y, et al. Development of an oral isoliquiritigenin self-nano-emulsifying drug delivery system (ILQ-SNEDDS) for Effective treatment of eosinophilic esophagitis induced by food allergy. J Pharm. 2022;15:1587. doi: 10.3390/ph15121587.
Dokania S, Joshi AK. Self-microemulsifying drug delivery system (SMEDDS)–challenges and road ahead. Drug Deliv. 2015;22:675-90. doi: 10.3109/10717544.2014.896058.
Kim DS, Cho JH, Park JH, Kim JS, Song ES, Kwon J, et al. Self-microemulsifying drug delivery system (SMEDDS) for improved oral delivery and photostability of methotrexate. Int J Nanomedicine. 2019;14:4949-60. doi: 10.2147/IJN.S211014.
Akula S, Gurram AK, Devireddy SR. Self-microemulsifying drug delivery systems: an attractive strategy for enhanced therapeutic profile. Int Sch Res Notices. 2014;2014:964051. doi: 10.1155/2014/964051.
Chauhan N, Vasava P, Khan SL, Siddiqui FA, Islam F, Chopra H, et al. Ethosomes: A novel drug carrier. Ann Med. 2022;82:104595. doi: 10.1016/j.amsu.2022.104595.
Kasai RD, Radhika D, Archana S, Shanavaz H, Koutavarapu R, Lee DY, et al. A review on hydrogels classification and recent developments in biomedical applications. Int J Polym Mate. 2022;72:1-11. doi: 10.1080/00914037.2022.2075872.
Kwon SS, Kong BJ, Park SN. Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose–hyaluronic acid and for applications as transdermal delivery systems for skin lesions. Eur J Pharm Biopharm. 2015;92:146-54. doi: 10.1016/j.ejpb.2015.02.025.
Gurpreet K, Singh SK. Review of nanoemulsion formulation and characterization techniques. Indian J Pharm Sci 2018;80:781-9. doi: 10.4172/pharmaceutical-sciences.1000422.
Kazemi M, Mohammadifar M, Aghadavoud E, Vakili Z, Aarabi MH, Talaei SA. Deep skin wound healing potential of lavender essential oil and licorice extract in a nanoemulsion form: Biochemical, histopathological and gene expression evidences. J Tissue Viability. 2020;29:116-24. doi: 10.1016/j.jtv.2020.03.004.
Cid-Samamed A, Rakmai J, Mejuto JC, Simal-Gandara J,Astray G. Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chem. 2022;384:132467. doi: 10.1016/j.foodchem.2022.132467.
Bernela M, Ahuja M, Thakur R. Enhancement of anti-inflammatory activity of glycyrrhizic acid by encapsulation in chitosan-katira gum nanoparticles. Eur J Pharm Biopharm 2016;105:141-7. doi: 10.1016/j.ejpb.2016.06.003.
Chakotiya AS, Tanwar A, Srivastava P, Narula A, Sharma RK. Effect of aquo-alchoholic extract of Glycyrrhiza glabra against Pseudomonas aeruginosa in mice lung infection model. Biomed Pharmacother. 2017;90:171-8. doi: 10.1016/j.biopha.2017.03.055.
Orlando G, Chiavaroli A, Leone S, Brunetti L, Politi M, Menghini L, et al. Inhibitory effects induced by Vicia faba, Uncariarhyncophylla, and Glycyrrhiza glabra water extracts on oxidative stress biomarkers and dopamine turnover in HypoE22 cells and isolated rat striatum challenged with 6-hydroxydopamine. Antioxidants. 2019;8:602. doi: 10.3390/antiox8120602.
Mishra D, Jain N, Rajoriya V, Jain AK. Glycyrrhizin conjugated chitosan nanoparticles for hepatocyte-targeted delivery of lamivudine. J Pharm Pharmacol. 2014;66:1082-93. doi: 10.1111/jphp.12235.
Shi L, Tang C, Yin C. Glycyrrhizin-modified O-carboxymethyl chitosan nanoparticles as drug vehicles targeting hepatocellular carcinoma. Biomater Res. 2012;33:7594-7604. doi: 10.1016/j.biomaterials.2012.06.072.
Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J. 2016;20:1-11. doi: 10.1016/j.biomaterials.2012.06.072.
Ajdary M, Moosavi MA, Rahmati M, Falahati M, Mahboubi M, Mandegary A, et al. Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity. J Nanomater. 2018;8:634. doi: 10.3390/nano8090634.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).