Osteocalcin and Metabolic Syndrome
Sažetak
This mini-review examines the multifaceted roles of osteocalcin, a bone-derived protein that functions as a critical mediator between skeletal biology and systemic metabolism. We explore osteocalcin's dual functions: its canonical role in bone mineralisation and structural integrity and its emerging significance as an endocrine regulator of energy homeostasis. The review synthesises current evidence regarding the distinct biological activities of carboxylated and undercarboxylated osteocalcin forms, their relationship with metabolic syndrome parameters and interactions with the autonomic nervous system. Additionally, we evaluate therapeutic interventions that modulate osteocalcin levels, potentially offering novel approaches for addressing metabolic disorders. By integrating findings from molecular, animal and clinical studies, this review aims to provide a comprehensive understanding of osteocalcin's physiological significance and its potential applications in metabolic health management, highlighting the bone-energy metabolism axis as an important frontier in endocrine research.
Reference
Neve A, Corrado A, Cantatore FP. Osteocalcin: skeletal and extra-skeletal effects. J Cell Physiol. 2013 Jun;228(6):1149-53. doi: 10.1002/jcp.24278.
Tavakol M, Liu J, Hoff SE, Zhu C, Heinz H. Osteocalcin: Promoter or inhibitor of hydroxyapatite growth? Langmuir. 2024 Jan 23;40(3):1747-1760. doi: 10.1021/acs.langmuir.3c02948.
Tsao YT, Huang YJ, Wu HH, Liu YA, Liu YS, Lee OK. Osteocalcin mediates biomineralization during osteogenic maturation in human mesenchymal stromal cells. Int J Mol Sci. 2017 Jan 17;18(1):159. doi: 10.3390/ijms18010159.
Komori T. Functions of osteocalcin in bone, pancreas, testis, and muscle. Int J Mol Sci. 2020 Oct 12;21(20):7513. doi.org/10.3390/ijms21207513.
Kapoor K, Pi M, Nishimoto SK, Quarles LD, Baudry J, Smith JC. The carboxylation status of osteocalcin has important consequences for its structure and dynamics. Biochim Biophys Acta Gen Subj. 2021 Mar;1865(3):129809. doi: 10.1016/j.bbagen.2020.129809.
Cristiani A, Maset F, De Toni L, Guidolin D, Sabbadin D, Strapazzon G, et al. Carboxylation-dependent conformational changes of human osteocalcin. Front Biosci (Landmark Ed). 2014 Jun 1;19(7):1105-16. doi: 10.2741/4270.
Gundberg CM, Lian JB, Booth SL. Vitamin K-dependent carboxylation of osteocalcin: friend or foe? Adv Nutr. 2012 Mar 1;3(2):149-57. doi: 10.3945/an.112.001834.
Smith C, Lin X, Parker L, Yeap BB, Hayes A, Levinger I. The role of bone in energy metabolism: A focus on osteocalcin. Bone. 2024 Nov;188:117238. doi: 10.1016/j.bone.2024.117238.
Mera P, Ferron M, Mosialou I. Regulation of energy metabolism by bone-derived hormones. Cold Spring Harb Perspect Med. 2018 Jun 1;8(6):a031666. doi: 10.1101/cshperspect.a031666.
Al Rifai O, Chow J, Lacombe J, Julien C, Faubert D, Susan-Resiga D, et al. Proprotein convertase furin regulates osteocalcin and bone endocrine function. J Clin Invest. 2017 Nov 1;127(11):4104-17. doi: 10.1172/JCI93437.
Ferron M, Lacombe J. Regulation of energy metabolism by the skeleton: osteocalcin and beyond. Arch Biochem Biophys. 2014 Nov 1;561:137-46. doi: 10.1016/j.abb.2014.05.022.
Mizokami A, Kawakubo-Yasukochi T, Hirata M. Osteocalcin and its endocrine functions. Biochem Pharmacol. 2017 May 15;132:1-8. doi: 10.1016/j.bcp.2017.02.001.
Otani T, Mizokami A, Kawakubo-Yasukochi T, Takeuchi H, Inai T, Hirata M. The roles of osteocalcin in lipid metabolism in adipose tissue and liver. Adv Biol Regul. 2020;78:100752. doi: 10.1016/j.jbior.2020.100752.
Brennan-Speranza TC, Conigrave AD. Osteocalcin: an osteoblast-derived polypeptide hormone that modulates whole body energy metabolism. Calcif Tissue Int. 2015 Jan;96(1):1-10. doi: 10.1007/s00223-014-9931-y.
Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome. A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640-5. doi: 10.1161/CIRCULATIONAHA.109.192644.
Lopes HF, Corrêa-Giannella ML, Consolim-Colombo FM, Egan BM. Visceral adiposity syndrome. Diabetol Metab Syndr. 2016 Jul 19;8:40. doi: 10.1186/s13098-016-0156-2.
Liu X, Yeap BB, Brock KE, Levinger I, Golledge J, Flicker L, et al. Associations of osteocalcin forms with metabolic syndrome and its individual components in older men: the health in men study. J Clin Endocrinol Metab. 2021 Aug 18;106(9):e3506-e3518. doi: 10.1210/clinem/dgab358.
Zeng H, Ge J, Xu W, Ma H, Chen L, Xia M, et al. Type 2 diabetes is causally associated with reduced serum osteocalcin: a genomewide association and mendelian randomization study. J Bone Miner Res. 2021 Sep;36(9):1694-707. doi: 10.1002/jbmr.4330.
Darwish L, Nguyen MM, Saleem M, Eakin KA, Herrmann N, Sugamori KS, et al. Lower serum osteocalcin concentrations in patients with type 2 diabetes and relationships with vascular risk factors among patients with coronary artery disease. J Diabetes Complications. 2019 May;33(5):390-7. doi: 10.1016/j.jdiacomp.2019.01.003.
Riquelme-Gallego B, García-Molina L, Cano-Ibáñez N, Sánchez-Delgado G, Andújar-Vera F, García-Fontana C, et al. Circulating undercarboxylated osteocalcin as estimator of cardiovascular and type 2 diabetes risk in metabolic syndrome patients. Sci Rep. 2020 Feb 4;10(1):1840. doi: 10.1038/s41598-020-58760-7.
Yeap BB, Alfonso H, Chubb SA, Gauci R, Byrnes E, Beilby JP, et al. Higher serum undercarboxylated osteocalcin and other bone turnover markers are associated with reduced diabetes risk and lower estradiol concentrations in older men. J Clin Endocrinol Metab. 2015 Jan;100(1):63-71. doi: 10.1210/jc.2014-3019.
Kanazawa I, Yamaguchi T, Yamauchi M, Yamamoto M, Kurioka S, Yano S, et al. Serum undercarboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus. Osteoporos Int. 2011 Jan;22(1):187-94. doi: 10.1007/s00198-010-1184-7.
Schlaich M, Straznicky N, Lambert E, Lambert G. Metabolic syndrome: a sympathetic disease? Lancet Diabetes Endocrinol 2015;3:148–57. doi: 10.1016/S2213-8587(14)70033-6.
Gil JS, Drager LF, Guerra-Riccio GM, Mostarda C, Irigoyen MC, Costa-Hong V, et al. The impact of metabolic syndrome on metabolic, proinflammatory and prothrombotic markers according to the presence of high blood pressure criterion. Clinics. 2013;68(12):1495-1501 doi: 10.6061/clinics/2013(12)04.
Tian A, Yang C, Jin Z. Osteocalcin in acute stress response: from the perspective of cardiac diseases. Curr Med Res Opin. 2020 Apr;36(4):545-6. doi: 10.1080/03007995.2020.1723073.
Hinoi E, Gao N, Jung DY, Yadav V, Yoshizawa T, Myers MG Jr, et al. The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity. J Cell Biol. 2008 Dec 29;183(7):1235-42. doi: 10.1083/jcb.200809113.
Zoch ML, Clemens TL, Riddle RC. New insights into the biology of osteocalcin. Bone. 2016 Jan;82:42-9. doi: 10.1016/j.bone.2015.05.046.
Karsenty G, Olson EN. Bone and muscle endocrine functions: unexpected paradigms of inter-organ communication. Cell. 2016 Mar 10;164(6):1248-56. doi: 10.1016/j.cell.2016.02.043.
Obri A, Khrimian L, Karsenty G, Oury F. Osteocalcin in the brain: from embryonic development to age-related decline in cognition. Nat Rev Endocrinol. 2018 Mar;14(3):174-82. doi: 10.1038/nrendo.2017.181.
Berger JM, Singh P, Khrimian L, Morgan DA, Chowdhury S, Arteaga-Solis E, et al. Mediation of the acute stress response by the skeleton. Cell Metab. 2019 Nov 5;30(5):890-902.e8. doi: 10.1016/j.cmet.2019.08.012.
Wei J, Hanna T, Suda N, Karsenty G, Ducy P. Osteocalcin promotes β-cell proliferation during development and adulthood through Gprc6a. Diabetes. 2014 Mar;63(3):1021-31. doi: 10.2337/db13-0887.
Moriishi T, Ozasa R, Ishimoto T, Nakano T, Hasegawa T, Miyazaki T, et al. Osteocalcin is necessary for the alignment of apatite crystallites, but not glucose metabolism, testosterone synthesis, or muscle mass. PLoS Genet 2020 May 28;16(5):e1008586. doi: 10.1371/journal.pgen.1008586.
Mohammad Rahimi GR, Niyazi A, Alaee S. The effect of exercise training on osteocalcin, adipocytokines, and insulin resistance: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int. 2021 Feb;32(2):213-24. doi: 10.1007/s00198-020-05592-w.
Mizokami A, Yasutake Y, Higashi S, Kawakubo-Yasukochi T, Chishaki S, Takahashi I, et al. Oral administration of osteocalcin improves glucose utilization by stimulating glucagon-like peptide-1 secretion. Bone. 2014 Dec;69:68-79. doi: 10.1016/j.bone.2014.09.006.
Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone. 2012 Feb;50(2):568-75. doi: 10.1016/j.bone.2011.04.017.
Mizokami A, Wang D, Tanaka M, Gao J, Takeuchi H, Matsui T, et al. An extract from pork bones containing osteocalcin improves glucose metabolism in mice by oral administration. Biosci Biotechnol Biochem. 2016 Nov;80(11):2176-83. doi: 10.1080/09168451.2016.1214530.
Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex--linking immunity and metabolism. Nat Rev Endocrinol. 2012;8(12):743-54. doi: 10.1038/nrendo.2012.189.
Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853-9. doi: 10.1038/nature01321.
Wang H, et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384-8. doi: 10.1038/nature01339.
Chavan SS, Pavlov VA, Tracey KJ. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity. 2017 Jun 20;46(6):927-942. doi: 10.1016/j.immuni.2017.06.008.
de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005 Aug;6(8):844-51. doi: 10.1038/ni1229
Satapathy SK, Garg S, Chauhan R, Sakhuja P, Malhotra V, Sharma BC, et al. Beneficial effects of tumor necrosis factor-alpha inhibition by pentoxifylline on clinical, biochemical, and metabolic parameters of patients with nonalcoholic steatohepatitis. Am J Gastroenterol. 2004 Oct;99(10):1946-52. doi: 10.1111/j.1572-0241.2004.40220.x.
Satapathy SK, Ochani M, Dancho M, Hudson LK, Rosas-Ballina M, Valdes-Ferrer SI, et al. Galantamine alleviates inflammation and other obesity-associated complications in high-fat diet-fed mice. Mol Med. 2011;17(7-8):599-606. doi: 10.2119/molmed.2011.00083.
Čolović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol. 2013;11(3):315-335. doi: 10.2174/1570159X11311030006.
Ali MA, El-Abhar HS, Kamel MA, Attia AS. Antidiabetic effect of galantamine: novel effect for a known centrally acting drug. PLoS One. 2015;10(8):e0134648. doi: 10.1371/journal.pone.0134648.
Satapathy SK, Ochani M, Dancho M, Hudson LK, Rosas-Ballina M, Valdes-Ferrer SI, et al. Galantamine alleviates inflammation and other obesity-associated complications in high-fat diet-fed mice. Mol Med. 2011;17(7-8):599-606. doi: 10.2119/molmed.2011.00083.
Bonaz B, Picq C, Sinniger V, Mayol JF, Clarençon D. Vagus nerve stimulation: from epilepsy to the cholinergic anti-inflammatory pathway. Neurogastroenterol Motil. 2013 Mar;25(3):208-21. doi: 10.1111/nmo.12076.
Pavlov VA, Tracey KJ. Bioelectronic medicine: updates, challenges and paths forward. Bioelectron Med. 2019;5:1. doi: 10.1186/s42234-019-0018-y.
Sangaleti CT, Katayama KY, De Angelis K, Lemos de Moraes T, Araújo AA, Lopes HF, et al. The cholinergic drug galantamine alleviates oxidative stress alongside anti-inflammatory and cardio-metabolic effects in subjects with the metabolic syndrome in a randomized trial. Front Immunol. 2021 Mar 11;12:613979. doi: 10.3389/fimmu.2021.613979.
de Moraes TL, Costa FO, Cabral DG, Fernandes DM, Sangaleti CT, Dalboni MA, et al. Brief periods of transcutaneous auricular vagus nerve stimulation improve autonomic balance and alter circulating monocytes and endothelial cells in patients with metabolic syndrome: a pilot study. Bioelectron Med. 2023 Mar 31;9(1):7. doi: 10.1186/s42234-023-00109-2.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
