Effects of Heart Cryoextract on Myocardial Antioxidant Capacity in Rats With Adrenaline-Induced Acute Myocardial Dystrophy

Sažetak


Background/Aim. In a healthy heart reactive oxygen species (ROS) are by-products of normal metabolism and perform important signalling functions (sometimes referred to as “redox signalling” or oxidative eustress). Aim of this study was to investigate the cardioprotective mechanisms of porcine heart cryoextract, specifically its effect on the regulation of antioxidant defence in cardiomyocytes in an adrenaline‐induced myocardial dystrophy model.

Methods. Eighty‐four male rats were divided into four groups: intact control (I), myocardial dystrophy without treatment (II), dystrophy + cryoextract (III) (50 μg peptides per 100 g body weight daily for 14 days) and dystrophy + amiodarone (IV) (10 mg/kg daily for 14 days). Myocardial dystrophy was induced by subcutaneous injection of 0.18 % adrenaline solution (5 mg/kg). On days 2, 7 and 14, superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx) activities and reduced glutathione (G-SH) content were measured in plasma and cardiac tissue using spectrophotometric and fluorometric assays.

Results. On day 2, myocardial dystrophy caused significant decreases in SOD activity (–69.2 %), catalase (–54.4 %), GPx (–40.1 %) and G-SH content (–46.7 %) compared to intact controls (p < 0.001). Cryoextract treatment promoted early restoration of SOD activity (up to 54.6 %), catalase (up to +30.8 %), GPx (+6.7 %) and G-SH (+37.5 %) by day 2 (p < 0.01). By day 14, the cryoextract group’s enzyme activities and G-SH levels approached those of intact animals and exceeded the effect of amiodarone on GPx and G-SH (p < 0.05).

Conclusions. Porcine heart cryoextract exerts a pronounced cardioprotective effect in an adrenaline‐induced myocardial dystrophy model by restoring the activity of key endogenous antioxidant enzymes and reduced glutathione levels. It surpasses amiodarone in the speed and extent of GPx and G-SH normalisation, supporting its further investigation as a biotherapeutic agent for correcting oxidative stress in cardiomyopathies.

Reference

Wafi AM. Nrf2 and autonomic dysregulation in chronic heart failure and hypertension. Front Physiol. 2023;14:1206527. doi:10.3389/fphys.2023.1206527.

Chyzh MO, Belochkina IV, Hloba VY, Sleta IV, Mykhailova IP, Hladkykh FV. [Ultrasound examination of rat hearts after experimental epinephrine injury and application of xenocardiac extract]. J V N Karazin Kharkiv Nat Univ Ser Med. 2024;32(2(49)):185-97. doi: 10.26565/2313-6693-2024-49-06. Ukrainian.

Dawi J, Affa S, Gonzalez E, Misakyan Y, Nikoghosyan D, Hajjar K, et al. Ferroptosis in cardiovascular disease and cardiomyopathies: therapeutic implications of glutathione and iron chelating agents. Biomedicines. 2024;12(3):558. doi: 10.3390/biomedicines12030558.

Qian K, Song L, Guo JM, Fu D, Shi J, Ma Y, et al. Baicalin improves isoproterenol-induced cardiac remodeling by regulating the Nrf2-dependent signaling pathway. BMC Cardiovasc Disord. 2024;24(1):733. doi: 10.1186/s12872-024-04395-9.

Chen J, Liu X, Hu Y, Chen X, Tan S. Cryopreservation of tissues and organs: present, bottlenecks, and future. Front Vet Sci. 2023;10:1201794. doi:10.3389/fvets.2023.1201794.

Koshurba IV, Hladkykh FV, Chyzh MO, Belochkina IV, Rublova TV. Hepatotropic effects of triple anti-ulcer therapy and placental cryoextract: the role of sex factors in lipid peroxidation. FiziolZh. 2022;68(5):25-32. doi: 10.15407/fz68.05.025.

Matvieienko MS, Hladkykh FV, Oleksiuk OB. Therapeutic potential of exosomes from mesenchymal stromal cells in sepsis. Karazin J Immunol. 2024;7(1):84-97. doi: 10.26565/3083-5615-2024-13-09.

Hladkykh FV, Liadova TI, Komorovsky RR, Chyzh MO. Ultrasound characterization of functional changes in myocardium following the use of mesenchymal stem cell-conditioned medium in an autoimmune myocarditis model. Ukr J Cardiol. 2024;31(6):35-46. doi: 10.31928/2664-4479-2024.6.3546.

Hladkykh FV, Liadova TI, Komorovsky RR. Cell-free cryopreserved biological agents for cardiac protection in autoimmune myocarditis: morphofunctional study in animal model. Scr Med. 2025;6(2):233-43. doi: 10.5937/scriptamed56-56858.

Hladkykh FV, Chyzh MO, Koshurba IV, Belochkina IV, Komorovsky RR, Marčenko MM, et al. Anthracycline-induced cardiac injury and the effect of placenta cryoextract on myocardium in doxorubicin cardiomyopathy. Ukrainian J Radiol Oncol. 2023;31(2):190-205. doi: 10.46879/ukroj.2.2023.190-205.

Chyzh MO, Hladkykh FV, Liadova TI, Matvieienko MS, Komorovsky RR. Metabolic changes in the myocardium during adrenaline-induced injury and the effect of heart cryoextract on lactate-pyruvate metabolism. Ukr J Cardiovasc Surg. 2025;33(2):53-61. doi: 10.63181/ujcvs.2025.33(2).53-61

Koshurba IV, Hladkykh FV, Chyzh MO. Modulation of lipid peroxidation and energy metabolism in the gastric mucosa as a mechanism of the activity of placental cryoextract in healing stress-induced erosive and ulcerative lesions. Gastroenterol (Ukr). 2022;56(3):149-55. doi: 10.22141/2308-2097.56.3.2022.503.

Markova OO, Popovich IL, Tserkovniuk AV, [Adrenal myocardial dystrophy and organism reactivity]. Kyiv: Computerpress; 1997. 126 p. Ukrainian.

Halchenko SYe. [Extracts of cryopreserved xenogeneic organ fragments: preparation and biological action]. Probl Cryobiol Cryomed. 2005;15(3):403–6. Ukrainian.

Engelbrecht I, Horn S, Giesy JP, Pieters R. Determining superoxide dismutase content and catalase activity in mammalian cell lines. MethodsX. 2023;11:102395. doi: 10.1016/j.mex.2023.102395.

Hadwan MH, et al. An efficient protocol for quantifying catalase activity in biological samples (CUPRAC-CAT method). Bull Natl Res Centre. 2024;48:34. doi: 10.1186/s42269-024-01189-z.

Ali AF, Hadwan MH. Simple kinetic method for assessing catalase activity in biological samples. MethodsX. 2021;8:101434. doi: 10.1016/j.mex.2021.101434.

Kamyshnikov VS. [Handbook of clinical-biochemical studies and laboratory diagnostics]. MEDpress-inform; 2009. 896 p. Ukrainian.

Zar J H. Biostatistical Analysis. 5th ed. Englewood Cliffs (NJ): Prentice Hall; 2014. 960 p.

Zhang H, Hu H, Zhai C, Jing L, Tian H. Cardioprotective strategies after ischemia-reperfusion injury. Am J Cardiovasc Drugs. 2024;24(1):5–18. doi: 10.1007/s40256-023-00614-4.

Zhao X, He Y, Zhang Y, Wan H, Wan H, Yang J. Inhibition of oxidative stress: an important molecular mechanism of Chinese herbal medicine (Astragalusmembranaceus, Carthamustinctorius L., Radix SalviaeMiltiorrhizae, etc.) in the treatment of ischemic stroke [retracted in: Oxid Med Cell Longev. 2024 Jan 9;2024:9790615]. Oxid Med Cell Longev. 2022;2022:1425369. doi: 10.1155/2022/1425369.

Tong C, Zhou B. Cardioprotective strategies in myocardial ischemia-reperfusion injury: implications for improving clinical translation. J Mol Cell Cardiol Plus. 2024 Dec 16;11:100278. doi: 10.1016/j.jmccpl.2024.100278.

Havrylenko TI, Lomakovskyi OM, Pidhaĭna OA, et al. Immunological reactivity and intensity of oxidative stress in stable ischemic heart disease. Ukr J Cardiovasc Surg. 2023;31(3):22-30. doi: 10.30702/ujcvs/23.31(03)/GL008-2230.

Voloshyna OB, Kovalchuk LI, Balashova IV, Buheruk VV, Zbitnieva VO. Coronavirus disease: impact on risk and clinical course of cardiovascular diseases. Odesa Med J. 2023;2:98-103. doi: 10.54229/2226-2008-2023-2-18.

Yevsieieva VV, Kharchenko KV. The role of the POCUS protocol in the diagnosis of urosepsis-caused Takotsubo syndrome in a patient with cervical cancer. Ukr J RadiolOncol. 2024;32(4):589-96. doi: 10.46879/ukroj.4.2024.589-596.

Tsivenko OI, Matvieienko MS, Liashok AL, et al. Monitoring of infusion therapy in patients with reduced cardiac reserve during abdominal operations. J V N KarazinKharkiv Natl UnivSer Med. 2024;32(1):73-85. doi: 10.26565/2313-6693-2024-48-08.

Kalynychenko T, Anoshyna M, Malyhon O, Belousov A, Yagovdik M, Parubets L, et al. Levels of lipid peroxidation markers and main laboratory health indicators in blood donors during wartime. East Ukr Med J. 2024;12(4):827-45. doi: 10.21272/eumj.2024;12(4):827-45.

Garmish O, Smiyan S, Hladkykh F, Koshak B, Komorovsky R. The effects of disease-modifying antirheumatic drugs on cardiovascular risk in inflammatory joint diseases: current evidence and uncertainties. Vasc Health Risk Manag. 2025;593–605. doi: 10.2147/VHRM.S523939.

Hladkykh FV, Liadova TI, Chyzh MO, Komorovsky RR, Babaeva HH, Matvieienko MS. Cardioselectivity of cryobiotechnological agents in the treatment of cardiovascular diseases. Vinnytsia: TVORY; 2025. p. 384. doi: 10.46879/2025.4.

Chyzh MO, Matvieienko MS, Hladkykh FV, Liadova TI, Komorovsky RR, Kozlova TV. Evaluation of the cardioprotective activity of cardiac cryoextract in an adrenaline-induced myocardiodystrophy model based on oxidative stress markers. J V N Karazin Kharkiv Nat Univ Ser Med. 2025;33(2(53)):178–93. doi: 10.26565/2313-6693-2025-53-02.

Objavljeno
2025/10/31
Rubrika
Originalni naučni članak