APPLICATION OF THE AHP-PROMETHEE METHOD FOR SELECTING THE OPTIMAL ELECTRIC VEHICLE FOR URBAN TRANSPORT

Ključne reči: integrisana AHP-PROMETHEE metoda, kriterijumi, rangiranje, električna vozila, tehnologija

Sažetak


Ova studija razjašnjava nalaze proistekle iz implementacije integrisane AHP-PROMETHEE višekriterijumske metode donošenja odluka u cilju odabira najpogodnijeg električnog vozila za gradski transport. AHP metodologija je olakšala identifikaciju kritičnih kriterijuma koji utiču na izbor električnog vozila za gradsku upotrebu, uključujući faktore kao što su cena, garancija baterije, brzina punjenja, ubrzanje do 100 km/h, maksimalna brzina, snaga motora, efikasnost, performanse baterije, i kilometraža. Naknadna primena PROMETHEE metode je omogućila rangiranje devet električnih vozila na osnovu ovih utvrđenih kriterijuma. Svaka alternativa vozila je procenjena u pogledu njenog kapaciteta da ispuni određene zahteve i preferencije donosioca odluka. Analiza je otkrila da se Mini Cooper E pojavio kao model koji je najefikasniji u skladu sa prioritetnim kriterijumima. Ovo vozilo se smatra optimalnim izborom za potrebe gradskog prevoza, s obzirom na sve relevantne faktore. Očekuje se da će odluka o izboru specifičnog električnog vozila uticati na efikasnost, održivost i ekonomsku održivost gradskog transportnog sistema. Štaviše, preporučljivo je održavati stalni nadzor napretka u tehnologiji električnih vozila i infrastrukture za punjenje kako bi se osiguralo da odabrani model i dalje predstavlja najbolju opciju u budućnosti.

Reference

1. Berenbach, D.H., & Walker, S.I (2022). The Environmental Impact of Electric Vehicle Charging Infrastructure. Energy Policy, 171, 113128.
2. Bosupeng, M. (2016). Adverse effects of the automotive industry on carbon dioxide emissions. The European Journal of Applied Economics, 13(1), 1-12.
3. Brans, J.P., & Mareschal, B.(1994). PROMETHEE Methods for Multiple Criteria Decision Analysis. Springer.
4. Davis, C., & Boundy, R.G. (2022). The Transportation Energy Data Book: Edition 40. Oak Ridge National Laboratory.
5. Hentzel, L.H., & Schmitz, M. (2021). Challenges and Opportunities in Lithium-Ion Battery Recycling. Journal of Hazardous Materials, 414, 125491.
6. Hu, H.S., Liang, J.M., Yu, C.H. (2022). Noise Reduction Characteristics of Electric Vehicles and Their Impact on Urban Noise Levels. Applied Acoustics, 178, 107918.
7. Ibrahim, M.A.M., Khan, M.M.R., Ali, M.H. (2019). Advanced Lightweight Materials for Automotive Applications. Journal of Materials Research and Technology, 8, 1235-1247.
8. Jacobson, M.Z., & Delucchi, M.A. (2011). Providing All Global Energy With Wind, Water, and Solar Power, Part I: Technologies, Energy Resources, Quantities and Areas of Infrastructure, and Materials. Energy Policy, 39, 1154-1169.
9. Layton, D.C., & Martin, J.W. (2020). The Environmental Impact of Lithium-Ion Batteries and the Challenges Ahead. Resources, Conservation and Recycling, 155, 104768.
10. Mladenović-Ranisavljević, I., Babić, G., Vuković, M., Voza, D. (2021). Multicriteria Visual Approach to the Analysis of Water Quality – A Case Study of the Tisa River Basin in Serbia, Water, 13, 3537
11. Muller, R.P., Wilson, A.C. (2021). Electronics Waste Management in the Modern Automotive Industry. Waste Management, 119, 142-150.
12. Rifkin, J. (2011). The Third Industrial Revolution: How Lateral Power Is Transforming Energy, the Economy, and the World. Palgrave Macmillan.
13. Saaty, T.L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. New York: McGraw-Hill.
14. Saha, T.K., Ali, M.I., Uddin, M.A. (2020). Advanced Energy Management Systems for Electric Vehicles. IEEE Transactions on Vehicular Technology, 69, 2345-2358.
15. Savić, A., Dobrijević, G. (2022). The Impact of the Covid-19 Pandemic on Work Organization. The European Journal of Applied Economics, 19(1), 1-15.
16. Shehu, M. (2020). Does Urbanization Intensify Carbon Emissions in Nigeria. The European Journal of Applied Economics, 17(2), 161-177.
17. Singh, A., & Deshpande, P. (2022). Modern and Upcoming Technological Trends in Automobile Industry. International Research Journal of Engineering and Technology, 9(3), 2131-2140.
18. Source: Ilić, I. (2024). Choosing an electric vehicle for urban transport using the AHP-PROMETHEE decision-making method [Graduation thesis, University Union-Nikola Tesla, Faculty of Information Technology and Engineering, Belgrade, Serbia]. (in Serbian)
19. Sperling, D. (2009). Two Billion Vehicles: Driving Toward Sustainability. Oxford University Press.
20. Taiebat, M., Brown, A.L., Safford, H.R., Qu, S., Xu, M. (2018). Electric Vehicles: Realizing Their Full Potential. Environmental Science & Technology, 52(20), 11449-11465.
Objavljeno
2024/11/13
Rubrika
Originalni naučni članak