Серумска депривација индукује ћелијску смрт апоптозом у ThESC ћелијској линији

  • Ana Petrovic
  • Ivana Nikolic University of Kragujevac, Faculty of medical sciences Kragujevac
  • Milan Zaric University of Kragujevac, Faculty of medical sciences Kragujevac
  • Ivanka Zelen University of Kragujevac, Faculty of medical sciences Kragujevac
  • Danijela Jovanovic Clinical center Kragujevac
  • Zoran Milosavljevic University of Kragujevac, Faculty of medical sciences Kragujevac
  • Tatjana Kastratovic Clinical centar Kragujevac
  • Maja Čolić Faculty of Medical Sciences, University of Kragujevac
  • Marija Andjelkovic Faculty of Medical Sciences, Department of Biochemistry
  • Marina Mitrovic University of Kragujevac, Faculty of medical sciences Kragujevac

Sažetak


Миоми утеруса изграђени су од глатких мишићних ћелија зидова крвних судова утеруса и фибробласта који сачињавају основну компоненту фиброида. Циљ нашег истраживања било је испитивање цитотоксичног и апототичног ефекта серумске депривације на фибробласте који воде порекло из миома, ThESC ћелијска линија. Вијабилност ћелија, морфолошке промене као и проценат апоптотичних ћелија одређивани су у присуству и одсуству серума. Експериментална група ћелија била је узгајана у медијуму који није садржао серум у току 24 и 48 часова, док је контролна група ћелија узгајана у комплетном медијуму. Вијабилност ћелија била је одређивана помоћу МТТ теста; морфолошке промене детектоване су помоћу нативне микроскопије док је проценат апоптотичних ћелија био одређен бојењем помоћу етидијум бромид/акрил оранжом. Примећено је статистички значајано смањење вијабилносит ћелија експерименталне групе у поређењу са контроном групом ћелија. Ћелије експерименталне групе показивале су морфолошке промене карактеристичне за апотозу. Ове промене нису детектоване у контролној групи ћелија. Статистички значајно повећање у проценту апоптотичних ћелија примећено је у експерименталној групи, док у контролној групи проценат апоптотичних ћелија није испољавао статистичку значајност. Добијени резултати указују да је дужина серумске депривације у директној корелацији са индукцијом апоптотичне смрти у ThESC ћелијској линији.

Кључне речи: фиброиди, апоптоза, серумска депривација, вијабилност

 

 

Biografije autora

Ivana Nikolic, University of Kragujevac, Faculty of medical sciences Kragujevac

Department of Biochemistry

Assistent

Milan Zaric, University of Kragujevac, Faculty of medical sciences Kragujevac

Department of Biochemistry

Assistent

Ivanka Zelen, University of Kragujevac, Faculty of medical sciences Kragujevac

Department of Biochemistry

Docent (Assistant professor)

M.D., PhD

Danijela Jovanovic, Clinical center Kragujevac

Clinical centar Kragujevac

Heamatology department

M.D.

Zoran Milosavljevic, University of Kragujevac, Faculty of medical sciences Kragujevac

Department of Histology and embriology

Professor

Tatjana Kastratovic, Clinical centar Kragujevac

Gyneacology and obstetric department

M.D., PhD

Marina Mitrovic, University of Kragujevac, Faculty of medical sciences Kragujevac

Department of Biochemistry

Head of department of Biochemistry, Docent (Assistant professor)

PhD

Reference

Nowak RA. Novel therapeutic strategies for leiomyomas: targeting growth factors and their receptors. Environmental Health Perspectives. 2000; Volume 108, Supplement 5, pages 849-853

Strinic Tomislav et al. Uterine Artery Embolisation as Nonsurgical Treatment of Uterine Myomas. Obstet Gynecol. 2011; Article ID 489281, 4 pages doi:10.5402/2011/489281

Victor Gomel MD and Andrew I. Brill MD Reconstructive and Reproductive Surgery in Gynecology, First Edition. 2010; Elizabeth L. Taylor, Elizabeth A. Pritts, William H. Parker, and David L. Olive.; chapter 19, page 326 (doi: 10.3109/9781841847573)

Stewart EA. Uterine fibroids. Lancet. 2001; 357(9252):293-8.

Flake GP, Andersen J, Dixon D. Etiology and pathogenesis of uterine leiomyomas: a review. Environmental Health Perspectives. 2003; 111:1037-1054. http://dx.doi.org/10.1289/ehp.5787

Nowak RA Identification of new therapies for leiomyomas: what in vitro studies can tell us. Clin Obstet Gynecol. 2001; 44(2):327-34.

Shannon K. Laughlin, Jane C. Schroeder, Donna Day Baird. New Directions in the Epidemiology of Uterine Fibroids. Semin Reprod Med. 2010; 28(3):204-17

Krikun G. et al. A novel immortalized human endometrial stromal cell line with normal progestational response. Endocrinology, 2004; vol. 145 no. 5 2291-2296

Gerhard Gstraunthaler. Alternatives to the Use of Fetal Bovine Serum: Serum-free Cell Culture. Altex, 2003; volume 20, issue 4, pages 275-281

Annemarie Honegger and Rene E. Humbel. Insulin-like Growth Factors I and I1 in Fetal and Adult Bovine Serum. The Journal of Biological Chemistry, 1986; Vol. 261, No 2, pp. 569-575

Edward G. Hayman, Michael D. Pierschbacher, Shintaro Suzuki, Erkki Ruoslahti. Vitronectin—A major cell attachment-promoting protein in fetal bovine serum. Cell biology, 1983; Vol. 80, pp. 4003-4007

Lin Chen, Simon J. T. Mao, and William J. Larsen. Identification of a Factor in Fetal Bovine Serum That Stabilizes the Cumulus Extracellular Matrix. The Journal of Biological Chemistry, 1992; Vol. 267, No. 17, Issue of June 15, pp. 12380-12386

J.R. Dobrinsky, L.A. Johnson and D. Rath. Development of a Culture Medium (BECM-3) for Porcine Embryos: Effects of Bovine Serum Albumin and Fetal Bovine Serum on Embryo Development. Biology of Reproduction. 1996; vol. 55 no. 5 1069-1074

Stephan J. Reshkin. et al. Phosphoinositide 3-Kinase Is Involved in the Tumor-specific Activation of Human Breast Cancer Cell Na/H Exchange, Motility, and Invasion Induced by Serum Deprivation. The Journal of Biological Chemistry. 2000; 25;275(8):5361-9.

Mara Fiorani, Orazio Cantoni, Andrea Tasinato, Daniel Boscoboinik, Angelo Azzi. Hydrogen peroxide-and fetal bovine serum-induced DNA synthesis in vascular smooth muscle cells: positive and negative regulation by protein kinase C isoforms. Biochim Biophys Acta. 1995; 19;1269(1):98-104.

Barbara A. Christy, Lester F. Lau, and Daniel Nathans. A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with "zinc finger" sequences (transcription factors/serum response element). PNAS. 1988; vol. 85 no. 21 7857-7861

Chang-Qing Zhao, Da Liu, Hai Li, Lei-Sheng Jiang and Li-Yang Dai. Interleukin-1β enhances the effect of serum deprivation on rat annular cell apoptosis. Apoptosis. 2007;12(12):2155-61.

Esther Potier, Elisabeth Ferreira, Alain Meunier, Laurent Sedel, Delphine Logeart-Avramoglou, and Hervé Petite. Prolonged Hypoxia Concomitant with Serum Deprivation Induces Massive Human Mesenchymal Stem Cell Death. Tissue Eng. 2007;13(6):1325-31.

Barbara Ahlemeyer, Anja Möwes, Josef Krieglstein. Inhibition of serum deprivation- and staurosporine-induced neuronal apoptosis by Ginkgo biloba extract and some of its constituents. Eur J Pharmacol. 1999; 19;367(2-3):423-30.

G. V. Kulkarni and C. A. G. McCulloch. Serum deprivation induces apoptotic cell death in a subset of Balb/c 3T3 fibroblasts. J Cell Sci. 1994;107(Pt 5):1169-79.

Weiquan Zhu, Jinghai Chen, Xiangfeng Cong, Shengshou Hu, Xi Chen. Hypoxia and Serum Deprivation-Induced Apoptosis in Mesenchymal Stem Cells. Stem Cells. 2006; 24(2):416-25.

Graciela Fuertes, Jos’e Javier Mart´in De Llano, Adoraci´on Villarroya, A. Jennifer Rivett and Erwin Knecht. Changes in the proteolytic activities of proteasomes and lysosomes in human fibroblasts produced by serum withdrawal, amino-acid deprivation and confluent conditions. Biochem J. 2003; 375(Pt 1): 75–86.

W.A. Kues, M. Anger, J.W. Carnwath, D.Paul, J.Motlik, and H. Niemann. Cell Cycle Synchronization of Porcine Fetal Fibroblasts: Effects of Serum Deprivation and Reversible Cell Cycle Inhibitors. Biology of Reproduction. 2000; vol. 62 no. 2 412-419

Rosario Maroto and J. Regino Perez-Polo. BCL-2-Related Protein Expression in Apoptosis: OxidativeStress Versus Serum Deprivation in PC12 Cells. J Neurochem. 1997; 69(2):514-23.

Hee-Yong Kim, Mohammed Akbar, Audrey Lau, and Lisa Edsall. Inhibition of Neuronal Apoptosis by Docosahexaenoic Acid (22:6n-3) Role Of Phosphatidylserine In Antiapoptotic Effect. J Biol Chem. 2000; 275(45):35215-23.

Hans-Peter Gerber. et al. Vascular Endothelial Growth Factor Regulates Endothelial Cell Survival through the Phosphatidylinositol 3-Kinase/Akt Signal Transduction Pathway. J Biol Chem. 1998; 273(46):30336-43.

Supriya Jayadev et al. Role For Ceramide In Cell Cycle Arrest. The Journal of Biological Chemistry. 1995; 270, 2047-2052.

Alicia A Goyeneche, Jacquelyn M Harmon and Carlos M Telleria. Cell death induced by serum deprivation in luteal cells involves the intrinsic pathway of apoptosis. Reproduction. 2006; 131(1):103-11.

Takamatsu Manabu, Fujita Tsunenori, and Hotta Hak. Suppression Of Serum Starvation-Induced Apoptosis By Hepatitis C Virus Core Protein. Kobe J. Med.Sci. 2001; 47,97/112

Kummer J. L., Rao P. K., and Heidenreich K. A. Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. Journal of Biological Chemistry. 1997; 272, 20490-20494.

Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J., and Greenberg, M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995; Vol. 270 no. 5240 pp. 1326-1331

Chantal J. Schamberger, Christopher Gerner, Christa Cerni. Caspase-9 plays a marginal role in serum starvation-induced apoptosis. Exp Cell Res. 2005; 302(1):115-28.

Cohen, G. M., Sun, X.-M., Snowden, R. T., Dinsdale, D. and Skilleter, D. N. Key morphological features of apoptosis may occur in the absence of internucleosmal DNA fragmentation. Biochem J. 1992; 286(Pt 2): 331–334.

Collins, R. J., Harmon, B. V., Gobe, G. C. and Kerr, J. F. Internucleosomal DNA cleavage should not be the sole criterion for identifying apoptosis. Int. J. Rad. Biol. 1992; Vol. 61, No. 4 , Pages 451-453

Cohen, J. J. and Duke, R. C. Glucocorticoid activation of calcium dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol. 1984; 132(1):38-42.

Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A. and Oren, M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature. 1991; 352(6333):345-7

Colotta, F., Polentarutti, N., Sironi, M. and Mantovani, A. Expression and involvement of c-fos and c-jun protooncogenes in programmed cell death induced by growth factor deprivation in lymphoid cell lines. J Biol Chem. 1992; 267(26):18278-83.

Irma Charles. et al. Serum Deprivation Induces Apoptotic Cell Death of Transformed Rat Retinal Ganglion Cells via Mitochondrial Signaling Pathways. Invest Ophthalmol Vis Sci. 2005; 46(4):1330-8.

Li Y, Schlamp CL, Nickells RW. Experimental induction of retinal ganglion cell death in adult mice. Invest Ophthalmol Vis Sci. 1999; 40(5):1004-8.

Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996; 86(1):147-57.

Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell. 1997; 89(2):175-84.

Xinjianp Peng, Takeshmi Aruo, Hiroyam Atsuo, Shigekti Akekida, and Jun Deguchi. Serum Deprivation-Induced Apoptosis in Cultured Porcine Granulosa Cells Is Characterized by Increased Expression of p53 Protein, Fas Antigen and Fas Ligand and by Decreased Expression of PCNA. Endocr J. 1998; 45(2):247-53.

Gustincich S. and Schneider C. Serum deprivation response gene is induced by serum starvation but not by contact inhibition. Cell Growth Differ. 1993; 4(9):753-60.

Zhang B, Hirahashi J, Cullere X, Mayadas TN. Elucidation of molecular events leading to neutrophil apoptosis following phagocytosis: cross talk between caspase 8, reactive oxygen spe cies, and MAPK/ERK activation. J Biol Chem. 2003; 278(31):28443-54.

Objavljeno
2013/06/24
Rubrika
Originalni naučni članak