Recommender algorithms as a source of power in contemporary society
Abstract
Both tech companies and AI algorithms exercise immense power in today’s globally interconnected world, which is based on big data and digital footprints of online users. This paper analyses the transfer of power from societies to tech companies and algorithms with the aim of examining whether recommender algorithms can be considered a public good. Deployed methods include content analysis and literature reviews. The study has found that control exercised over public opinion, decisions and moods of online users is unprecedented to such a high degree in human history. The above-mentioned control is based on the impact of both tech companies and algorithms. The limitation of this research is the lack of quantitative analysis. Future research should concentrate on defining recommender algorithms as a public good and analyzing how different media content, including virtual reality, affects citizens’ psychology.
References
Ali, K. F., Whitebridge, S., Jamal, M. H., Alsafy, M. & Atkin, S. L. (2020). Perceptions, knowledge, and behaviors related to COVID-19 among social media users: Crosssectional study. Journal of Medical Internet Research, 22(9), e19913. https://dx.doi.org/10.2196%2F19913
/>Azucar, D., Marengo, D. & Settanni, M. (2018). Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis. Personality and Individual Differences, 124, 150–159. https://doi.org/10.1037/a0030383
/>Baumeister, R. F., Bratslavsky, E., Finkenauer, C. & Vohs, K. D. (2001). Bad Is Stronger than Good. Review of General Psychology, 5(4), 323–70. https://doi.org/10.1037/1089-2680.5.4.323
/>BBC (2021, February 18). Social networks: Australia enacts the law forcing Google and Facebook to pay for publishing news. BBC News. Retrieved from: https://www.bbc.com/serbian/lat/svet-56105726 [In Serbian]
Bojić, Lj. (2021). How Media Directly Impact Society: A Psychometric Analysis of Leading Twitter News Profiles and their Followers in Serbia. In: R. Surugiu, A. Stefanel, N. Apostol (eds.) 30 de ani de învăţământ jurnalistic şi de comunicare în Estul Europei/30 Years of Higher Education in Journalism and Communication in Eastern Europe (483-504). Bucharest: Tritonic. https://rifdt.instifdt.bg.ac.rs/handle/123456789/2365
/>Bojić, Lj. (2022). Culture Organism or Techno-Feudalism: How Growing Addictions and Artificial Intelligence Shape Contemporary Society. Belgrade: Institute for Philosophy and Social Theory.
Bojić, Lj., Nikolić, N. & Tucaković, L. (2022). Wars of Echo Chambers: Analysis of COVID-19 Echo Chambers in Serbia. Communications, 48(2).
Bojić, Lj., Zarić, M. & Žikić, S. (2021). Worrying impact of artificial intelligence and big data through the prism of recommender systems. Etnoantropološki problemi, 16(3), 935-957. https://doi.org/10.21301/eap.v16i3.13
/>Bojić, Lj., Zejnulahović, D. & Janković, M. (2021). Technofeudalism illustrated by Trump’s Twitter suspension and Australia vs. Google and Facebook dispute. Sociološki pregled, 55(2), 538-561. DOI: 10.5937/socpreg55-32105
Brown, E. (2017, December 1). 9 out of 10 Americans don’t fact-check information they read on social media. ZdNet. Retrieved from: https://www.zdnet.com/article/nineout-of-ten-americans-dont-fact-check-information-they-read-on-social-media/
/>Cadwalladr, C. (2017, January 18). The great British Brexit robbery: How our democracy was hijacked. The Guardian. Retrieved from: https://www.theguardian.com/technology/2017/may/07/the-great-british-brexit-robbery-hijacked-democracy
/>Cinelli, M., Morales, G. D. F., Galeazzi, A., Quattrociocchi, W. & Starnini, M. (2021). The echo chamber effect on social media. Proceedings of the National Academy of Sciences, 118(9). https://doi.org/10.1073/pnas.2023301118
/>Conway-Silva, B. A., Filer, C. R, Kenski, K. & Tsetsi, E. (2018). Reassessing Twitter’s AgendaBuilding Power: An Analysis of Intermedia Agenda-Setting Effects During the 2016 Presidential Primary Season. Social Science Computer Review, 36(4), 469–83. https://doi.org/10.1177/0894439317715430
/>Coviello, L., Fowler, J. H. & Franceschetti, M. (2014). Words on the web: Noninvasive detection of emotional contagion in online social networks. Proceedings of the IEEE, 102(12), 1911–1921. https://doi.org/10.1109/jproc.2014.2366052
/>Dang-Xuan, L. & Stieglitz, S. (2021). Impact and Diffusion of Sentiment in Political Communication – An Empirical Analysis of Political Weblogs. Proceedings of the International AAAI Conference on Web and Social Media, 6(1), 427-30. https://ojs.aaai.org/index.php/ICWSM/article/view/14326
/>Deeva, I. (2019). Computational Personality Prediction Based on Digital Footprint of a Social Media User. Procedia Computer Science, 156, 185-193. https://doi.org/10.1016/j.procs.2019.08.194
/>Derks, D., Fischer, A. H. & Bosc, A. E. R. (2008). The role of emotion in computer-mediated communication: A review. Computers in Human Behavior, 24(3), 766–785. https://doi.org/10.1016/j.chb.2007.04.004
/>Dhar, V. (2021, December 11). Nationalize’ Facebook and Twitter as public goods. The Hill. Retrieved from: https://thehill.com/opinion/technology/534458-nationalize-facebook-and-twitter-as-public-goods
/>Domke, D., Shah, D. V. & Wackman, D. B. (1998). Media priming effects: accessibility, association, and activation. International Journal of Public Opinion Research, 10(1), 51–74. https://doi.org/10.1093/ijpor/10.1.51
/>Farnadi, G., Sitaraman, G., Sushmita, S., Celli, F., Kosinski, M., Stillwell, D., Davalos, S., Moens, M.-F. & De Cock, M. (2016). Computational personality recognition in social media. User Modeling and User-Adapted Interaction, 26(2), 109-142. https://doi.org/10.1007/s11257-016-9171-0
/>Feezell, J. T. (2018). Agenda Setting through Social Media: The Importance of Incidental News Exposure and Social Filtering in the Digital Era. Political Research Quarterly, 71(2), 482–94. https://doi.org/10.1177/1065912917744895
/>Ferguson, N. (2018, December 11). What Is to Be Done? Safeguarding Democratic Governance in The Age of Network Platforms. Hoover Institution. Retrieved from: https://www.hoover.org/research/what-be-done-safeguarding-democratic-governance-age-network-platforms
/>Ferrara, E. & Yang, Z. (2015). Measuring emotional contagion in social media. PLoS ONE, 10(11), e0142390. https://doi.org/10.1371/journal.pone.0142390
/>Frenda, S. J., Nichols, R. M. & Loftus, E. F. (2011). Current Issues and Advances in Misinformation Research. Current Directions in Psychological Science, 20(1) 20–23. https://doi.org/10.1177/0963721410396620
/>Garimella, K., Morales, G. D. F., Gionis, A. & Mathioudakis, M. (2018). Political discourse on social media: Echo chambers, gatekeepers, and the price of bipartisanship. In: Proceedings of the 2018 World Wide Web Conference, Geneva, Switzerland: International World Wide Web Conferences Steering Committee. https://arxiv.org/abs/1801.01665
/>Graham, J. (2022, January 18). Is Facebook listening to me? Why those ads appear after you talk about things. USA Today. Retrieved from: https://www.usatoday.com/story/tech/talkingtech/2019/06/27/does-facebook-listen-to-your-conversations/1478468001/
/>Greving, H., Oeberst, A., Kimmerle, J. & Cress, U. (2018). Emotional Content in Wikipedia Articles on Negative Man-Made and Nature-Made Events. Journal of Language and Social Psychology, 37(3), 267–87. https://doi.org/10.1177/0261927X17717568
/>Haring, M. & Cecire, M. (2013, January 18). Why the Color Revolutions Failed. Foreign Policy. Retrieved from: https://foreignpolicy.com/2013/03/18/why-the-color-revolutions-failed/
/>Harrington, K. M. (2019). Surveillance Is the Business Model of the Internet. What’s Coming Next? MediaVillage. Retrieved from: https://www.mediavillage.com/article/surveillance-is-the-business-model-of-the-internet-whats-coming-next/
/>Hatfield, E., Cacioppo, J. T. & Rapson, R. L. (1993). Emotional Contagion. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139174138
/>Hinds, J. & Joinson, A. (2019). Human and computer personality prediction from digital footprints. Current Directions in Psychological Science, 28(2), 204-211. https://doi.org/10.1177/0963721419827849
/>Holcombe, R. G. (2000). Public Goods Theory and Public Policy. The Journal of Value Inquiry, 34, 273-286. https://doi.org/10.1007/978-94-015-9440-0_8
/>Hsieh, H.-F. & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15(9), 1277−1288. https://doi.org/10.1177/1049732305276687
/>Johnson, J. (2021, December 1). Worldwide digital population as of January 2021. Statista. Retrieved from: https://www.statista.com/statistics/617136/digital-population-worldwide/
/>Kalsnes, B. & Olof Larsson, A. (2017). Understanding news sharing across social media. Journalism Studies, 19(11), 1669–1688. https://doi.org/10.1080/1461670x.2017.1297686
/>Kaplan, A. & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of social media. Business Horizons, 53(1), 59–68. https://doi.org/10.1016/j.bushor.2009.09.003
/>Kleinberg, J., Lakkaraju, H., Leskovec, J., Ludwig, J. & Mullainathan, S. (2018). Human Decisions and Machine Predictions. The Quarterly Journal of Economics, 133(1), 237–293. https://doi.org/10.1093/qje/qjx032
/>Lamberti, F., Sanna, A. & Demartini, C. (2009). A Relation-Based Page Rank Algorithm for Semantic Web Search Engines. IEEE Transactions on Knowledge and Data Engineering, 21(1), 123-136. https://doi.org/10.1109/TKDE.2008.113
/>Li, H. O.-Y. L., Bailey, A., Huynh, D. & Chan, J. (2020). YouTube as a source of information on COVID-19: a pandemic of misinformation? BMJ Global Health, 5(5), e002604. https://doi.org/10.1136/bmjgh-2020-002604
/>Liebrecht, C., Hustinx, L. & Mulken, M. (2019). The Relative Power of Negativity: The Influence of Language Intensity on Perceived Strength. Journal of Language and Social Psychology, 38(2), 170–93. https://doi.org/10.1177/0261927X18808562
/>Madison, E. (2014). News Narratives, Classified Secrets, Privacy, and Edward Snowden. Electronic News, 8(1), 72–75. https://doi.org/10.1177/1931243114527869
/>Milano, S., Taddeo, M., & Floridi, L. (2020). Recommender systems and their ethical challenges. AI & Society. https://doi.org/10.1007/s00146-020-00950-y
/>Nickerson, R. S. (1998). Confirmation Bias: A Ubiquitous Phenomenon in Many Guises. Review of General Psychology, 2(2), 175–220. https://doi.org/10.1037/1089-2680.2.2.175
/>NYT (2022, February 3). Meta spent $10 billion on the Metaverse in 2021, dragging down profit. The Indian Express. Retrieved from: https://indianexpress.com/article/technology/tech-news-technology/meta-spent-10-billion-on-the-metaverse-in-2021-dragging-down-profit-7754565/
/>Orlowski, J. (2020). The Social Dilemma. IMDB. https://www.imdb.com/title/tt11464826/
/>Park, S. P. (2015). Applying “negativity bias” to Twitter: Negative news on Twitter, emotions, and political learning. Journal of Information Technology & Politics, 12(4), 342–359. https://doi.org/10.1080/19331681.2015.1100225
/>Paul, K. (2020, December 1). Russian hackers targeting US political campaigns ahead of elections, Microsoft warns. The Guardian. Retrieved from: https://www.theguardian.com/technology/2020/sep/10/microsoft-russia-us-election-2020-hackers
/>Pavlović, M. & Bojić, Lj. (2020). Political marketing and strategies of digital illusions – examples from Venezuela and Brazil. Sociološki pregled, 54(4), 1391-1414. DOI:10.5937/socpreg54-27846
Perrigo, B. (2021). Inside Frances Haugen’s Decision to Take on Facebook. Time. Retrieved from: https://time.com/6121931/frances-haugen-facebook-whistleblower-profile/
/>Pew (2019, December 1). Americans Are Wary of the Role Social Media Sites Play in Delivering the News. Pew Research Center. Retrieved from: https://www.journalism.org/wp-content/uploads/sites/8/2019/09/PJ_2019.09.25_Social-Media-and-News_FINAL.pdf
/>Philippe M. (2014). Politics 2.0: New forms of digital political marketing and political communication. Trípodos, 34, 13-22. http://www.tripodos.com/index.php/Facultat_Comunicacio_Blanquerna/article/view/163
/>Redding, R. (2019, December 1). A Brief History of Google Ad Strategy (and why you should care). DP Marketing Services. Retrieved from: https://www.dpmarketing.services/abrief-history-of-google-ad-strategy-and-why-you-should-care
/>Rieger, M. O. & Wang, M. (2020, December 1). Trust in Government Actions during the COVID-19 Crisis. Universitat Trier. Retrieved from: https://www.uni-trier.de/fileadmin/fb4/prof/BWL/FIN/Files/Trust_in_Government_Actions_during_the_COVID-19_Crisis.pdf
/>Risso, L. (2018). Harvesting your soul? Cambridge Analytica and Brexit. In: Brexit Means Brexit? The Selected Proceedings of the Symposium (75-90). Mainz, Germany: Akademie der Wissenschaften und der Literatur. https://www.adwmainz.de/fileadmin/user_upload/Brexit-Symposium_Online-Version.pdf
/>Rozin, P. & Royzman, E. B. (2001). Negativity Bias, Negativity Dominance, and Contagion. Personality and Social Psychology Review, 5(4), 296–320. https://doi.org/10.1207/S15327957PSPR0504_2
/>Schmidt, A. L., Zollo, F., Scala, A., Betsch, C., and Quattrociocchi, W. (2018). Polarization of the vaccination debate on Facebook. Vaccine, 36(25), 3606–3612. https://doi.org/10.1016/j.vaccine.2018.05.040
/>Sear, R. F., Velásquez, N., Leahy, R., Restrepo, N. J., El Oud, S., Gabriel, N., Lupu, Y. & Johnson, N. F. (2020). Quantifying COVID-19 content in the online health opinion war using machine learning. IEEE Access, 8, 91886-91893. https://doi.org/10.1109/ACCESS.2020.2993967
/>Settanni, M., Azucar, D. & Marengo, D. (2018). Predicting individual characteristics from digital traces on social media: A meta-analysis. Cyberpsychology, Behavior and Social Networking, 21(4), 217-228. https://doi.org/10.1089/cyber.2017.0384
/>Spohr, D. (2017). Fake news and ideological polarization: Filter bubbles and selective exposure on social media. Business Information Review, 34(3), 150–160. https://doi.org/10.1177/0266382117722446
/>Stieglitz, S., & Dang-Xuan, L. (2013). Emotions and information diffusion in social media —Sentiment of microblogs and sharing behavior. Journal of Management Information Systems, 29(4), 217–248. https://doi.org/10.2753/mis0742-1222290408
/>Trougakos, J. P., Chawla, N., & McCarthy, J. M. (2020). Working in a pandemic: Exploring the impact of COVID-19 health anxiety on work, family, and health outcomes. Journal of Applied Psychology, 105(11), 1234–1245. https://doi.org/10.1037/apl0000739
/>UNESCO (2021). WPFD 2021 – Concept Note - Word Press Freedom Day 2021: Information as a public good - 30 years of the Windhoek Declaration. UNESCO. Retrieved from: https://en.unesco.org/sites/default/files/wpfd_2021_concept_note_en.pdf
/>Varoufakis, Y. (2021, September 7). Techno-Feudalism is taking over. DiEM25. https://diem25.org/techno-feudalism-taking-over/
/>Witteman, H. O. & Zikmund-Fisher, B. J. (2012). The defining characteristics of Web 2.0 and their potential influence in the online vaccination debate. Vaccine, 30(25), 3734-3740. https://doi.org/10.1016/j.vaccine.2011.12.039
/>Youyou, W., Kosinski, M. & Stillwell, D. (2015). Computer-based personality judgments are more accurate than those made by humans. Proceedings of the National Academy of Sciences, 112(4), 1036-1040. https://doi.org/10.1073/pnas.1418680112
/>Zollo, F. (2019). Dealing with digital misinformation: A polarised context of narratives and tribes. EFSA Journal, 17(S1) e170720. http://dx.doi.org/10.2903/j.efsa.2019.e170720
/>Zuckerman, E. (2009, December 1). “Twitter.org? and building models for social media.” Ethan Zuckerman Blog. Retrieved from: https://ethanzuckerman.com/2009/09/28/twitter-org-and-building-models-for-social-media/