Značaj praćenja vrednosti saturiranog kiseonika u hemoglobinu u sportskoj dijagnostici

  • Bojan Međedović Faculty of sport and tourism
  • Jovan Plećaš
Ključne reči: testiranje, zone opterećenja, oksimetrija

Sažetak


Kardio-respiratorna izdržljivost predstavlja jednu od najvažnijih determinanti uspešnosti u sportskim aktivnostima. Kako bi se sportista što bolje pripremio za sportske izazove mora da bude izložen odgovarajućem treningu koji treba da bude baziran na individualnim fiziološkim pokazateljima opterećenja tokom aktivnosti. Iako se trenažno opterećenje može odrediti na više načina, intenzitet treninga se najčešće određuje preko laktatnog praga uzimanjem uzoraka krvi, ili preko ventilatornog praga praćenjem razmene gasova. Takvi podaci, ipak, predstavljaju zakasnele indirektne pokazatelje povećane anaerobne resinteze ATP-a. Mišićna oksimetrija, zasnovana na blisko-infracrvenoj spektroskopiji (NIRS), predstavlja neinvazivnu metodu koja obezbeđuje informacije o promenama stanja kiseonika u hemoglobinu i potencijalno predstavlja pogodnu tehniku prepoznavanja nivoa opterećenja direktno u radnoj muskulaturi.

Reference

Addabbo, F., Ratli, B., Park, H.C., Kuo, M. C., Ungvari, Z., Ciszar, A., Krasnikof, F., Sodhi, K., Zhang, F., Nasjletti, A., et al. (2009). The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: Proteomic approach. American Journal of Pathology, 174, 34–43.

Aziz, A. R., Chia, M., & Teh, K. C. (2000). The relationship between maximal oxygen uptake and repeated sprint performance indices in field hockey and soccer players. Journal of Sports Medicine and Physical Fitness, 40(3), 195–200.

Bhambhani, Y. M., Buckley, S. M., & Susaki, T. (1997). Detection of ventilator threshold using near infrared spectroscopy in men and women. Medicine and Science of Sports Exercise, 29(3), 402–409.

Billat, V. L., Demarle, A., Slawinski, J., Paiva, M., & Koralsztein, J. P. (2001). Physical andtraining characteristics of top-classmarathon runners. Medicine and Science in Sports and Exercise, 33, 2089–2097.

Boone, J., Barstow, T. J., Celie, B., Prieur, F., & Bourgois, J. (2015). The impact of pedal rate onmuscle oxygenation, muscle activation and whole-body VO₂ during ramp exercise in healthy subjects. European Journal of Applied Physiology, 115, 57–70.

Coen, P. M., Jubrias, S. A., Distefano, G., Amati, F., Mackey, D. C., Glynn, N. W., Manini, T. M., Wohlgemuth, S. E., Leeuwenburgh, C., Cummings, S. R. (2013). Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults. The journals of gerontology. Series A, Biological sciences and medical sciences, 68, 447–455.

Ferrari, M., Muthalib, M., & Quaresima, V. (2011). The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments. Philosophical Transactions of the Royal Society A, 369, 4577–4590.

García-Pallarés, J., Sánchez-Medina, L., Carrasco, L., Díaz, A., & Izquierdo, M. (2009). Endurance and neuromuscular changes in world-class level kayakers during a periodized training cycle. European Journal of Applied Physiology, 106, 629–638.

Grassi, B., & Quaresima, V. (2016) Near-infrared spectroscopy and skeletal muscle oxidative function in vivo in health and disease: a review from an exercise physiology perspective. Journal of Biomedical Optics, 21, 091313.

Grassi, B., Quaresima, V., Marconi, C., Ferrari, M., & Cerretelli, P. (1999). Blood lactate accumulation and muscle deoxygenation during incremental exercise. Journal of Applied Physiology, 87(1), 348–55.

Keir, D. A., Fontana, F. Y., Robertson, T. C., Murias, J. M., Paterson, D. H., Kowalchuk, J. M., et al. (2015). Exercise Intensity Thresholds: Identifying the Boundaries of Sustainable Performance. Medicine and Science in Sports and Exercise, 47, 1932–1940.

Mann, T. N., Lamberts, R. P., & Lambert, M. I. (2014). High responders and low responders: factors associated with individual variation in response to standardized training. Sports Medicine, 44, 1113–1124.

McCully, K. K., & Hamaoka, T. (2000). Near-infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle? Exercise and Sports Science, 28(3), 123–127.

McLaughlin, J. E., Howley, E. T., Bassett, D. R., Thompson, D. L., & Fitzhugh, E. C. (2010). Test of the classic model for predicting endurance running performance. Medicine and Science in Sports and Exercise, 42, 991–997.

McManus, C. J., & Cooper, C. E. (2018). Performanse comparision of the MOXY and PortaMon near-infrared spectroscopy muscle oximeters at rest and during exercise. Journal of Biomedical Optics, 23(1), 015007.

Miura, T., Takeuchi, T., Sato, H., et al. (1998). Skeletal muscle deoxygenation during exercise assessed by near-infrared spectroscopy and its relation to expired gas analysis parameters. Japanese Circulation Journal, 62(9), 649–657.

Moalla, W., Dupont, G., Berthoin, S., & Ahmaidi S. (2005). Respiratory muscle deoxygenation and ventilatory threshold assessments using near infrared spectroscopy in children. International Journal of Sports Medicine, 26(7), 576–582.

Murias, J. M., Keir, D. A., Spencer, M. D., & Paterson, D. H. (2013). Sex-related differences in muscle deoxygenation during ramp incremental exercise. Respiratory Physiology & Neurobiology, 189, 530–536.

Noakes, T. (2001). Lore of Running, 4th edn. Champaign, IL: Human Kinetics, 282–284.

PortaMon leaflet, dostupno na www.artinis.com/portamon

Scharhag-Rosenberger, F., Walitzek, S., Kindermann, W., & Meyer, T. (2012). Differences in adaptations to 1 year of aerobic endurance training: individual patterns of nonresponse. Scandinavian Journal of Medicine and Science in Sports, 22, 113–118.

Seiler, K. S., & Kjerland, G. (2006). Quantifying training intensity distribution in elite endurance athletes: is there evidence for an “optimal” distribution? Scandinavian Journal of Medicine and Science in Sport, 16, 49–56.

Stöggl, T., & Sperlich, B. (2015). The training intensity distribution among well-trained and elite endurance athletes. Frontiers in Physiology, 6, 295.

Stratton, E., O’Brien, B. J., Harvey, J., Blitvich, J., McNicol, A. J., Janissen, D., et al. (2009). Treadmill velocity best predicts 5000-m run performance. International Journal of Sports Medicine, 30, 40–45.

Trovato, F. M., Imbesi, R., Conway, N., & Castrogiovanni, P. (2016). Morphological and Functional Aspects of Human Skeletal Muscle. Journal of Functional Morphology and Kinesiology, 1, 289–302.

Wang, B., Tian, Q., Zhang, Z., & Gong, H. (2011). Comparisons of local and systemic aerobic fitness parameters between finswimmers with different athlete grade levels. European Journal of Applied Physiology, 112, 567–578.

Wang, B., Xu, G., Tian, Q., Sun, J., Sun, B., Zhang, L., et al. (2012). Differences between the Vastus Lateralis and Gastrocnemius Lateralis in the Assessment Ability of Breakpoints of Muscle Oxygenation for Aerobic Capacity Indices During an Incremental Cycling Exercise. Journal of Sports Science and Medicine, 11, 606–613.

Wolpern, A. E., Burgos, D. J., Janot, J. M., & Dalleck, L. C. (2015). Is a thresholdbased model a superior method to the relative percent concept for establishing individual exercise intensity? A randomized controlled trial. BMC Sports Science Medicine and Rehabilitation, 7, 16.

Zwaard, S., Jaspers, T. S., Blokland, J., Achterberg, C., Visser, J.M., Uil, A. R., Hofmijster, M. J., Levels, K., Noordhof, D. A., Haan, A., Koning, J. J., van der Laarse, W. J., & de Ruiter, C. J. (2016). Oxygenation Threshold Derived from Near-Infrared Spectroscopy: Reliability and Its Relationship with the First Ventilatory Threshold. PLoS ONE, 11(9), 1–16.

Objavljeno
2021/07/07
Rubrika
Pregledni članak