Implant stability and marginal bone level of microgrooved zirconia dental implants: A 3-month experimental study on dogs

  • Rafael Arcesio Delgado-Ruiz Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
  • Aleksa Marković Faculty of Dentistry, University of Belgrade, Belgrade, Serbia
  • Jose Luis Calvo-Guirado Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
  • Zoran Lazić Clinic of Maxillofacial, Oral Surgery and Implantology, Military Medical Academy, Belgrade, Serbia
  • Adriano Piattelli Dental School, University of Chieti-Pescara, Chieti, Italy
  • Daniele Boticelli Faculty of Odontology, Göeteborg University, Göeteborg, Sweden
  • Jose Eduardo Mate-Sanchez Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
  • Bruno Negri Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
  • Maria Piedad Ramirez-Fernandez Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
  • Tijana Mišić Faculty of Dentistry, University of Belgrade, Belgrade, Serbia
Keywords: dental implants, surface properties, biomechanics, microscopy, electron, scanning, alveolar bone loss, zirconium, titanium, dogs,

Abstract


Background/Aim.

The modification of implant surfaces could affect mechanical implant stability as well as dynamics and quality of peri-implant bone healing. The aim of this 3-month experimental study in dogs was to investigate implant stability, marginal bone levels and bone tissue response to zirconia dental implants with two laser-micro-grooved intraosseous surfaces in comparison with nongrooved sandblasted zirconia and sandblasted, high-temperature etched titanium implants. Methods. Implant surface characterization was performed using optical interferometric profilometry and energy dispersive X-ray spectroscopy. A total of 96 implants (4 mm in diameter and 10 mm in length) were inserted randomly in both sides of the lower jaw of 12 Fox Hound dogs divided into groups of 24 each: the control (titanium), the group A (sandblasted zirconia), the group B (sandblasted zirconia plus microgrooved neck) and the group C (sandblasted zirconia plus all microgrooved). All the implants were immediately loaded. Insertion torque, periotest values, radiographic crestal bone level and removal torque were recorded during the 3-month follow-up. Qualitative scanning electon microscope (SEM) analysis of the bone-implant interfaces of each group was performed. Results. Insertion torque values were higher in the group C and control implants (p < 0.05). Periotest values increased in all the periods in proportion to the extent of microgrooving as follows: the group C > the control > the group B > the group A (p < 0.05). Radiographic measurements showed minimal crestal bone loss at 3 months for microgrooved zirconia implants (groups C and B) and control implants compared with the group A implants (p < 0.05).  The removal torque values increased with time for all the groups as follows: the group C > the control > the group B > the group A (p < 0.05). SEM showed that implant surfaces of the groups B and C had an extra bone growth inside the microgrooves that corresponded to the shape and direction of the microgrooves. Conclusion. The addition of microgrooves to the entire intraosseous surface of zirconia dental implants enhances primary and secondary implant stability, promotes bone tissue ingrowth and preserves crestal bone levels.

 

References

Andreiotelli M, Wenz HJ, Kohal R. Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin Oral Implants Res 2009; 20(Suppl 4): 32−47.

Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Bioma-terials 1999; 20(1): 1−25.

Albrektsson T, Sennerby L, Wennerberg A. State of the art of oral implants. Periodontol 2008; 47: 15−26.

Scarano A, Di CF, Quaranta M, Piattelli A. Bone response to zirconia ceramic implants: an experimental study in rabbits. J Oral Implantol 2003; 29(1): 8−12.

Kohal RJ, Wolkewitz M, Hinze M, Han J, Bächle M, Butz F. Bio-mechanical and histological behavior of zirconia implants: an experiment in the rat. Clin Oral Implants Res 2009; 20(4): 333−9.

Davies JE. Mechanisms of endosseous integration. Int J Pros-thodont 1998; 11(5): 391−401.

Aloy-Prósper A, Maestre-Ferrín L, Peñarrocha-Oltra D, Peñarrocha-Diago M. Marginal bone loss in relation to the implant neck surface: an update. Med Oral Patol Oral Cir Bucal 2011; 16(3): e365−8.

Langhoff JD, Voelter K, Scharnweber D, Schnabelrauch M, Schlottig F, Hefti T, et al. Comparison of chemically and pharmaceutically modified titanium and zirconia implant surfaces in dentistry: a study in sheep. Int J Oral Maxillofac Surg 2008; 37(12): 1125−32.

Gahlert M, Röhling S, Wieland M, Sprecher CM, Kniha H, Milz S. Osseointegration of zirconia and titanium dental implants: a histological and histomorphometrical study in the maxilla of pigs. Clin Oral Implants Res 2009; 20(11): 1247−53.

Lee J, Sieweke JH, Rodriguez NA, Schüpbach P, Lindström H, Susin C, et al. Evaluation of nano-technology-modified zirconia oral implants: a study in rabbits. J Clin Periodontol 2009; 36(7): 610−7.

Ferguson SJ, Langhoff JD, Voelter K, Rechenberg B, Scharnweber D, Bierbaum S, et al. Biomechanical comparison of different sur-face modifications for dental implants. Int J Oral Maxillofac Implants 2008; 23(6): 1037−46.

Pirker W, Kocher A. Immediate, non-submerged, root-analogue zirconia implants placed into single-rooted extraction sockets: 2-year follow-up of a clinical study. Int J Oral Maxillofac Surg 2009; 38(11): 1127−32.

Delgado-Ruíz RA, Calvo-Guirado JL, Moreno P, Guardia J, Gomez-Moreno G, Mate-Sánchez JE, et al. Femtosecond laser micro-structuring of zirconia dental implants. J Biomed Mater Res B Appl Biomater 2011; 96(1): 91−100.

Lu J, Rao MP, MacDonald NC, Khang D, Webster TJ. Improved endothelial cell adhesion and proliferation on patterned tita-nium surfaces with rationally designed, micrometer to nano-meter features. Acta Biomater 2008; 4(1): 192−201.

Lamers E, Horssen R, Riet J, Delft CF, Luttge R, Walboomers XF, et al. The influence of nanoscale topographical cues on initial osteoblast morphology and migration. Eur Cell Mater 2010; 20: 329−43.

Loesberg WA, Riet J, Delft FC, Schön P, Figdor CG, Speller S, et al. The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion. Biomaterials 2007; 28(27): 3944−51.

Lamers E, Walboomers FX, Domanski M, Riet J, Delft FC, Luttge R, et al. The influence of nanoscale grooved substrates on os-teoblast behavior and extracellular matrix deposition. Biomate-rials 2010; 31(12): 3307−16.

Klein MO, Bijelic A, Toyoshima T, Götz H, Koppenfels RL, Al-Nawas B, et al. Long-term response of osteogenic cells on micron and submicron-scale-structured hydrophilic titanium surfaces: sequence of cell proliferation and cell differentiation. Clin Oral Implants Res 2010; 21(6): 642−9.

Abrahamsson I, Berglundh T. Tissue characteristics at micro-threaded implants: an experimental study in dogs. Clin Implant Dent Relat Res 2006; 8(3): 107−13.

Nevins M, Nevins ML, Camelo M, Boyesen JL, Kim DM. Human histologic evidence of a connective tissue attachment to a den-tal implant. Int J Periodontics Restorative Dent 2008; 28(2): 111−21.

Weiner S, Simon J, Ehrenberg DS, Zweig B, Ricci JL. The effects of laser microtextured collars upon crestal bone levels of dental implants. Implant Dent 2008; 17(2): 217−28.

Pecora GE, Ceccarelli R, Bonelli M, Alexander H, Ricci JL. Clinical evaluation of laser microtexturing for soft tissue and bone at-tachment to dental implants. Implant Dent 2009; 18(1): 57−66.

Rocchietta I, Fontana F, Addis A, Schupbach P, Simion M. Surface-modified zirconia implants: tissue response in rabbits. Clin Oral Implants Res 2009; 20(8): 844−50.

Shin S, Han D. Influence of a microgrooved collar design on soft and hard tissue healing of immediate implantation in fresh extraction sites in dogs. Clin Oral Implants Res 2010; 21(8): 804−14.

Geng JP, Ma QS, Xu W, Tan KB, Liu GR. Finite element analysis of four thread-form configurations in a stepped screw im-plant. J Oral Rehabil 2004; 31(3): 233−9.

Faegh S, Müftü S. Load transfer along the bone-dental implant interface. J Biomech 2010; 43(9): 1761−70.

Marotti G, Zallone AZ, Ledda M. Number, size and arrangement of osteoblasts in osteons at different stages of formation. Cal-cif Tissue Res 1976; 21(Suppl): 96−101.

Zallone AZ. Relationships between shape and size of the os-teoblasts and the accretion rate of trabecular bone surfaces. Anat Embryol (Berl) 1977; 152(1): 65−72.

Puckett S, Pareta R, Webster TJ. Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. Int J Nanomedicine 2008; 3(2): 229−41.

Martinez H, Davarpanah M, Missika P, Celletti R, Lazzara R. Op-timal implant stabilization in low density bone. Clin Oral Im-plants Res 2001; 12(5): 423−32.

Gedrange T, Hietschold V, Mai R, Wolf P, Nicklisch M, Harzer W. An evaluation of resonance frequency analysis for the deter-mination of the primary stability of orthodontic palatal im-plants. A study in human cadavers. Clin Oral Implants Res 2005; 16(4): 425−31.

Chang P, Lang NP, Giannobile WV. Evaluation of functional dynamics during osseointegration and regeneration associated with oral implants. Clin Oral Implants Res 2010; 21(1): 1−12.

Rozé J, Babu S, Saffarzadeh A, Gayet-Delacroix M, Hoornaert A, Layrolle P. Correlating implant stability to bone structure. Clin Oral Implants Res 2009;20(10):1140-1140.

Sennerby L, Dasmah A, Larsson B, Iverhed M. Bone tissue res-ponses to surface-modified zirconia implants: A histomor-phometric and removal torque study in the rabbit. Clin Im-plant Dent Relat Res 2005;7(Suppl 1): S13−20.

Hoffmann O, Angelov N, Zafiropoulos G, Andreana S. Osseointe-gration of zirconia implants with different surface characteris-tics: an evaluation in rabbits. Int J Oral Maxillofac Implants 2012; 27(2): 352−8.

Oliva J, Oliva X, Oliva JD. One-year follow-up of first consecu-tive 100 zirconia dental implants in humans: a comparison of 2 different rough surfaces. Int J Oral Maxillofac Implants 2007; 22(3): 430−5.

Gahlert M, Gudehus T, Eichhorn S, Steinhauser E, Kniha H, Erhardt W. Biomechanical and histomorphometric comparison be-tween zirconia implants with varying surface textures and a ti-tanium implant in the maxilla of miniature pigs. Clin Oral Im-plants Res 2007; 18(5): 662−8.

Jung YC, Han CH, Lee KW. A 1-year radiographic evaluation of marginal bone around dental implants. Int J Oral Maxillofac Implants 1996; 11(6): 811−8.

Hermann JS, Schoolfield JD, Schenk RK, Buser D, Cochran DL. In-fluence of the size of the microgap on crestal bone changes around titanium implants. A histometric evaluation of un-loaded non-submerged implants in the canine mandible. J Pe-riodontol 2001; 72(10): 1372−83.

Lee D, Choi Y, Park K, Kim C, Moon I. Effect of microthread on the maintenance of marginal bone level: a 3-year prospective study. Clin Oral Implants Res 2007; 18(4): 465−70.

Published
2015/04/23
Section
Original Paper