Implantatna stabilnost i nivo marginalne kosti kod cirkonijum endoosealnih implantata sa mikrostrukturiranom površinom: tromesečna eksperimentalna studija na psima

  • Rafael Arcesio Delgado-Ruiz Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
  • Aleksa Marković Faculty of Dentistry, University of Belgrade, Belgrade, Serbia
  • Jose Luis Calvo-Guirado Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
  • Zoran Lazić Clinic of Maxillofacial, Oral Surgery and Implantology, Military Medical Academy, Belgrade, Serbia
  • Adriano Piattelli Dental School, University of Chieti-Pescara, Chieti, Italy
  • Daniele Boticelli Faculty of Odontology, Göeteborg University, Göeteborg, Sweden
  • Jose Eduardo Mate-Sanchez Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
  • Bruno Negri Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
  • Maria Piedad Ramirez-Fernandez Faculty of Medicine and Dentistry, University of Murcia, Murcia, Spain
  • Tijana Mišić Faculty of Dentistry, University of Belgrade, Belgrade, Serbia
Ključne reči: dental implants||, ||implantati, stomatološki, surface properties||, ||površina, svojstva, biomechanics||, ||biomehanika, microscopy, electron, scanning||, ||mikroskopija, elektronska, skenirajuća, alveolar bone loss||, ||kost, resorpcija, zirconium||, ||cirkonijum, titanium||, ||titanijum, dogs||, ||psi,

Sažetak


Uvod/Cilj. Modifikacija površine implantata može uticati na njegovu mehaničku stabilnost kao i na dinamiku i kvalitet periimplantatnog koštanog zarastanja. Cilj ove tromesečne eksperimentalne studije na psima bio je da se ispita stabilnost implantata, nivo marginalne kosti i odgovor koštanog tkiva na cirkonijum endoosealne implantate sa dve intraosealne površine mikrostrukturirane laserom u poređenju sa peskiranim cirkonijum implantatima čija površina nije mikrostrukturirana kao i sa titanijum implantatima čije su površine peskirane i nagrižene visokom temperaturom. Metode. Karakterizacija površine implantata učinjena je optičkom interferometrijskom profilometrijom i analizom energetskog spektra pri difrakciji X-zračenja. Ukupno 96 implantata (prečnika 4 mm i dužine 10 mm) ugrađeno je nasumično i obostrano u donju vilicu kod 12 pasa (lisičara) i podeljeno u četiri grupe po 24: kontrolna (titanijum implantati); grupa A (peskirani cirkonijum implantati); grupa B (peskirani cirkonijum implantati sa mikrokanalima u koronarnoj trećini); grupa C (peskirani cirkonijum implantati sa mikrokanalima duž cele površine). Svi implantati su odmah opterećeni. Meren je obrtni momenat pri ugradnji implantata, vrednosti periotesta, radiografski nivo marginalne kosti i obrtni moment za uklanjanje implantata tokom tromesečnog perioda praćenja. Međuspoj kosti i implantata iz svake grupe ispitivan je kvalitativnom skenirajućom elektronskom mikroskopijom (SEM). Rezultati. Veći obrtni momenat zabeležen je pri ugradnji implantata kod grupe C i kontrolne grupe (p < 0,05).  U ispitivanom vremenskom periodu, vrednosti periotesta uvećavale su se srazmerno obimu mikrostrukturiranja površine i to: grupa C > kontrolna grupa > grupa B > grupa A (p < 0,05). Radiografskom analizom utvrđen je minimalni gubitak marginalne kosti u trećem mesecu praćenja oko cirkonijum implantata sa mikrokanalima (grupa B i C) i kontrola u poređenju sa implantatima grupe A (p < 0,05). Vrednosti obrtnog momenta za uklanjanje implantata vremenom su se uvećavale u svim grupama na sledeći način: grupa C > kontrolna grupa > grupa B > grupa A (p < 0,05). Kod implantatnih površina grupa B i C, SEM je pokazala dodatni rast koštanog tkiva unutar mikrokanala koji odgovara njihovom obliku i pravcu. Zaključak. Formiranje mikrokanala duž cele intraosealne površine cirkonijum endoosealnih implantata povećava primarnu i sekundarnu implantatnu stabilnost, podstiče urastanje koštanog tkiva i održava nivo marginalne kosti.

Reference

Andreiotelli M, Wenz HJ, Kohal R. Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin Oral Implants Res 2009; 20(Suppl 4): 32−47.

Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Bioma-terials 1999; 20(1): 1−25.

Albrektsson T, Sennerby L, Wennerberg A. State of the art of oral implants. Periodontol 2008; 47: 15−26.

Scarano A, Di CF, Quaranta M, Piattelli A. Bone response to zirconia ceramic implants: an experimental study in rabbits. J Oral Implantol 2003; 29(1): 8−12.

Kohal RJ, Wolkewitz M, Hinze M, Han J, Bächle M, Butz F. Bio-mechanical and histological behavior of zirconia implants: an experiment in the rat. Clin Oral Implants Res 2009; 20(4): 333−9.

Davies JE. Mechanisms of endosseous integration. Int J Pros-thodont 1998; 11(5): 391−401.

Aloy-Prósper A, Maestre-Ferrín L, Peñarrocha-Oltra D, Peñarrocha-Diago M. Marginal bone loss in relation to the implant neck surface: an update. Med Oral Patol Oral Cir Bucal 2011; 16(3): e365−8.

Langhoff JD, Voelter K, Scharnweber D, Schnabelrauch M, Schlottig F, Hefti T, et al. Comparison of chemically and pharmaceutically modified titanium and zirconia implant surfaces in dentistry: a study in sheep. Int J Oral Maxillofac Surg 2008; 37(12): 1125−32.

Gahlert M, Röhling S, Wieland M, Sprecher CM, Kniha H, Milz S. Osseointegration of zirconia and titanium dental implants: a histological and histomorphometrical study in the maxilla of pigs. Clin Oral Implants Res 2009; 20(11): 1247−53.

Lee J, Sieweke JH, Rodriguez NA, Schüpbach P, Lindström H, Susin C, et al. Evaluation of nano-technology-modified zirconia oral implants: a study in rabbits. J Clin Periodontol 2009; 36(7): 610−7.

Ferguson SJ, Langhoff JD, Voelter K, Rechenberg B, Scharnweber D, Bierbaum S, et al. Biomechanical comparison of different sur-face modifications for dental implants. Int J Oral Maxillofac Implants 2008; 23(6): 1037−46.

Pirker W, Kocher A. Immediate, non-submerged, root-analogue zirconia implants placed into single-rooted extraction sockets: 2-year follow-up of a clinical study. Int J Oral Maxillofac Surg 2009; 38(11): 1127−32.

Delgado-Ruíz RA, Calvo-Guirado JL, Moreno P, Guardia J, Gomez-Moreno G, Mate-Sánchez JE, et al. Femtosecond laser micro-structuring of zirconia dental implants. J Biomed Mater Res B Appl Biomater 2011; 96(1): 91−100.

Lu J, Rao MP, MacDonald NC, Khang D, Webster TJ. Improved endothelial cell adhesion and proliferation on patterned tita-nium surfaces with rationally designed, micrometer to nano-meter features. Acta Biomater 2008; 4(1): 192−201.

Lamers E, Horssen R, Riet J, Delft CF, Luttge R, Walboomers XF, et al. The influence of nanoscale topographical cues on initial osteoblast morphology and migration. Eur Cell Mater 2010; 20: 329−43.

Loesberg WA, Riet J, Delft FC, Schön P, Figdor CG, Speller S, et al. The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion. Biomaterials 2007; 28(27): 3944−51.

Lamers E, Walboomers FX, Domanski M, Riet J, Delft FC, Luttge R, et al. The influence of nanoscale grooved substrates on os-teoblast behavior and extracellular matrix deposition. Biomate-rials 2010; 31(12): 3307−16.

Klein MO, Bijelic A, Toyoshima T, Götz H, Koppenfels RL, Al-Nawas B, et al. Long-term response of osteogenic cells on micron and submicron-scale-structured hydrophilic titanium surfaces: sequence of cell proliferation and cell differentiation. Clin Oral Implants Res 2010; 21(6): 642−9.

Abrahamsson I, Berglundh T. Tissue characteristics at micro-threaded implants: an experimental study in dogs. Clin Implant Dent Relat Res 2006; 8(3): 107−13.

Nevins M, Nevins ML, Camelo M, Boyesen JL, Kim DM. Human histologic evidence of a connective tissue attachment to a den-tal implant. Int J Periodontics Restorative Dent 2008; 28(2): 111−21.

Weiner S, Simon J, Ehrenberg DS, Zweig B, Ricci JL. The effects of laser microtextured collars upon crestal bone levels of dental implants. Implant Dent 2008; 17(2): 217−28.

Pecora GE, Ceccarelli R, Bonelli M, Alexander H, Ricci JL. Clinical evaluation of laser microtexturing for soft tissue and bone at-tachment to dental implants. Implant Dent 2009; 18(1): 57−66.

Rocchietta I, Fontana F, Addis A, Schupbach P, Simion M. Surface-modified zirconia implants: tissue response in rabbits. Clin Oral Implants Res 2009; 20(8): 844−50.

Shin S, Han D. Influence of a microgrooved collar design on soft and hard tissue healing of immediate implantation in fresh extraction sites in dogs. Clin Oral Implants Res 2010; 21(8): 804−14.

Geng JP, Ma QS, Xu W, Tan KB, Liu GR. Finite element analysis of four thread-form configurations in a stepped screw im-plant. J Oral Rehabil 2004; 31(3): 233−9.

Faegh S, Müftü S. Load transfer along the bone-dental implant interface. J Biomech 2010; 43(9): 1761−70.

Marotti G, Zallone AZ, Ledda M. Number, size and arrangement of osteoblasts in osteons at different stages of formation. Cal-cif Tissue Res 1976; 21(Suppl): 96−101.

Zallone AZ. Relationships between shape and size of the os-teoblasts and the accretion rate of trabecular bone surfaces. Anat Embryol (Berl) 1977; 152(1): 65−72.

Puckett S, Pareta R, Webster TJ. Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. Int J Nanomedicine 2008; 3(2): 229−41.

Martinez H, Davarpanah M, Missika P, Celletti R, Lazzara R. Op-timal implant stabilization in low density bone. Clin Oral Im-plants Res 2001; 12(5): 423−32.

Gedrange T, Hietschold V, Mai R, Wolf P, Nicklisch M, Harzer W. An evaluation of resonance frequency analysis for the deter-mination of the primary stability of orthodontic palatal im-plants. A study in human cadavers. Clin Oral Implants Res 2005; 16(4): 425−31.

Chang P, Lang NP, Giannobile WV. Evaluation of functional dynamics during osseointegration and regeneration associated with oral implants. Clin Oral Implants Res 2010; 21(1): 1−12.

Rozé J, Babu S, Saffarzadeh A, Gayet-Delacroix M, Hoornaert A, Layrolle P. Correlating implant stability to bone structure. Clin Oral Implants Res 2009;20(10):1140-1140.

Sennerby L, Dasmah A, Larsson B, Iverhed M. Bone tissue res-ponses to surface-modified zirconia implants: A histomor-phometric and removal torque study in the rabbit. Clin Im-plant Dent Relat Res 2005;7(Suppl 1): S13−20.

Hoffmann O, Angelov N, Zafiropoulos G, Andreana S. Osseointe-gration of zirconia implants with different surface characteris-tics: an evaluation in rabbits. Int J Oral Maxillofac Implants 2012; 27(2): 352−8.

Oliva J, Oliva X, Oliva JD. One-year follow-up of first consecu-tive 100 zirconia dental implants in humans: a comparison of 2 different rough surfaces. Int J Oral Maxillofac Implants 2007; 22(3): 430−5.

Gahlert M, Gudehus T, Eichhorn S, Steinhauser E, Kniha H, Erhardt W. Biomechanical and histomorphometric comparison be-tween zirconia implants with varying surface textures and a ti-tanium implant in the maxilla of miniature pigs. Clin Oral Im-plants Res 2007; 18(5): 662−8.

Jung YC, Han CH, Lee KW. A 1-year radiographic evaluation of marginal bone around dental implants. Int J Oral Maxillofac Implants 1996; 11(6): 811−8.

Hermann JS, Schoolfield JD, Schenk RK, Buser D, Cochran DL. In-fluence of the size of the microgap on crestal bone changes around titanium implants. A histometric evaluation of un-loaded non-submerged implants in the canine mandible. J Pe-riodontol 2001; 72(10): 1372−83.

Lee D, Choi Y, Park K, Kim C, Moon I. Effect of microthread on the maintenance of marginal bone level: a 3-year prospective study. Clin Oral Implants Res 2007; 18(4): 465−70.

Objavljeno
2015/04/23
Broj časopisa
Rubrika
Originalni članak