Prenatal diagnosis of lissencephaly: A case report

  • Nataša Cerovac Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
  • Milan Terzić Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Clinic for Gynecology and Obstetrics, Clinical Center of Serbia, Belgrade, Serbia
  • Milan Borković Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia
  • Nevena Divac Faculty of Medicine, University of Belgrade, Belgrade, Serbia §Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
  • Radan Stojanović Faculty of Medicine, University of Belgrade, Belgrade, Serbia Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
  • Milica Prostran Faculty of Medicine, University of Belgrade, Belgrade, Serbia Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
Keywords: lissencephaly, fetal monitoring, ultrasonography, magnetic resonance imaging, mental retardation,

Abstract


Introduction. Lissencephaly (“smooth brain”) forms a major group of brain malformations due to abnormal neuronal migration. It can cause severe intellectual and motor disability and epilepsy in children. The prenatal diagnosis of this malformation is rare. Case report. We presented a case of the prenatal diagnosis of lissencephaly. A 30-year old pregnant woman was reffered to the hospital at the week 35 of gestation for magnetic resonance imaging (MRI) after an ultrasound examination demonstrated fetal cerebral ventriculomegaly. Fetal MRI of the brain showed “smooth”, agyrya cortex. The female infant was born at term with birth weight of 2,500 g and Apgar score 8, showing global developmental delay. Postnatal ultrasound and MRI confirmed classical lissencephaly. She is now 8 years old and has spastic quadriparesis, mental retardation and epilepsy. Conclusion. Confirmation of the ultrasound diagnosis with MRI is desirable for the prenatal diagnosis of lissencephaly.

 


References

Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB. A developmental and genetic classification for malformations of cortical development. Neurology 2005; 65(12): 1873−87.

Barkovich JA, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012; 135(Pt 5): 1348−69.

Norman MC, McGilliuray BC, Kalousek DK, Hill A, Poskitt KJ. Congenital malformations of the brain: pathologic, embriologic, clinical, radiologic and genetic aspects. Oxford: Oxford University Press; 1995.

Kato M. Lissencephaly and the molecular basis of neuronal migration. Hum Mol Genet 2003; 12(90001): 89−96.

Barkowich AJ. Congenital malformations of the brain and skull. In: Barkovich AJ, editor. Pediatric neuroimiging. New York: Lippincott Wiliams Wilkins; 2000. p. 291−439.

Barkovich JA, Koch TK, Carrol CL. The spectrum of lissen-cephaly: Report of ten patients analyzed by magnetic resonance imaging. Ann Neurol 1991; 30(2): 139−46.

Dobyns Wb, Truwit CL. Lissencephaly and Other Malforma-tions of Cortical Development: 1995 Update. Neuropediatrics 1995; 26(3): 132−47.

Barkovich AJ, Guerrini R, Battaglia G, Kalifa G, N'Guyen T, Parmeggiani A, et al. Band heterotopia: correlation of outcome with magnetic resonance imaging parameters. Ann Neurol 1994; 36(4): 609−17.

Kuzniecky RI, Barkovich AJ. Malformations of cortical develop-ment and epilepsy. Brain Dev 2001; 23(1): 2−11.

Forman MS, Squier W, Dobyns WB, Golden JA. Genotypically de-fined lissencephalies show distinct pathologies. J Neuropathol Exp Neurol 2005; 64(10): 847−57.

Bahi-Buisson N, Poirier K, Boddaert N, Saillour Y, Castelnau L, Philip N, et al. Refinement of cortical dysgeneses spectrum associ-ated with TUBA1A mutations. J Med Genet 2008; 45(10): 647−53.

Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S, Scheffer I, et al. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 1998; 92(1): 63−72.

des Portes V, Francis F, Pinard JM, Desguerre I, Moutard ML, Snoeck I, et al. Doublecortin is the major gene causing X-linked subcortical laminar heterotopia (SCLH). Hum Mol Genet 1998; 7(7): 1063−70.

Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns WB, et al. Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 1993; 364(6439): 717−21.

Pilz DT, Matsumoto N, Minnerath S, Mills P, Gleeson JG, Allen KM, et al. LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum Mol Genet 1998; 7(13): 2029−37.

Kumar RA, Pilz DT, Babatz TD, Cushion TD, Harvey K, Topf M, et al. TUBA1A mutations cause wide spectrum lissencephaly (smooth brain) and suggest that multiple neuronal migration pathways converge on alpha tubulins. Hum Mol Genet 2010; 19(14): 2817−27.

Morris-Rosendahl DJ, Najm J, Lachmeijer AM, Sztriha L, Martins M, Kuechler A, et al. Refining the phenotype of alpha-1a Tubulin (TUBA1A) mutation in patients with classical lissencephaly. Clin Genet 2008; 74(5): 425−33.

Jissendi-Tchofo P, Kara S, Barkovich JA. Midbrain-hindbrain in-volvement in lissencephalies. Neurology 2009; 72(5): 410−8.

Cardoso C, Leventer RJ, Ward HL, Toyo-Oka K, Chung J, Gross A, et al. Refinement of a 400-kb Critical Region Allows Genotyp-ic Differentiation between Isolated Lissencephaly, Miller-Dieker Syndrome, and Other Phenotypes Secondary to Dele-tions of 17p13.3. Am J Hum Genet 2003; 72(4): 918−30.

Dobyns WB, Stratton RF, Parke JT, Greenberg F, Nussbaum RL, Ledbetter DH. Miller-Dieker syndrome: lissencephaly and mon-osomy 17p. J Pediatr 1983; 102(4): 552−8.

Gressens P, Kosofsky BE, Evrard P. Cocaine-induced disturbances of corticogenesis in the developing murine brain. Neurosci Lett 1992; 140(1): 13−6.

Friocourt G, Marcorelles P, Saugier-Veber P, Quille M, Marret S, Laquerrière A. Role of cytoskeletal abnormalities in the neuro-pathology and pathophysiology of type I lissencephaly. Acta Neuropathol 2011; 121(2): 149−70.

Chen CP, Chang TY, Guo WY, Wu PC, Wang LK, Chern SR, et al. Chromosome 17p13.3 deletion syndrome: aCGH character-ization, prenatal findings and diagnosis, and literature review. Gene 2013; 532(1): 152−9.

Cushion T, Paciorkowski A, Pilz D, Mullins JL, Seltzer L, Marion R, et al. De Novo Mutations in the Beta-Tubulin Gene TUBB2A Cause Simplified Gyral Patterning and Infantile-Onset Epilep-sy. Am J Hum Genet 2014; 94(4): 634−41.

Greco P, Resta M, Vimercati A, Dicuonzo F, Loverro G, Vicino M, et al. Antenatal diagnosis of isolated lissencephaly by ultrasound and magnetic resonance imaging. Ultrasound Obstet Gynecol 1998; 12(4): 276−9.

Menascu S, Weinstock A, Farooq O, Hoffman H, Cortez MA. EEG and neuroimaging correlations in children with lissencephaly. Seizure 2013; 22(3): 189−93.

de Wit MC, de Rijk-van Andel J, Halley DJ, Poddighe PJ, Arts WF, de Coo IF, et al. Long-term follow-up of type 1 lissencephaly: survival is related to neuroimaging abnormalities. Dev Med Child Neurol 2011; 53(5): 417−21.

Wright R, Kyriakopoulou V, Ledig C, Rutherford MA, Hajnal JV, Rueckert D, et al. Automatic quantification of normal cortical folding patterns from fetal brain MRI. Neuroimage 2014; 91: 21−32.

Comstock CH, Chervenak FA. Transabdominal sonography of the fetal forebrain. In: Kurjak A, editor. Progress in Obstetric and Gynecological Sonography Series, Ultrasound of the Fetal Brain. Carnforth, UK: Parthenon Publishing; 1995. p. 43−82.

Ghai S, Fong KW, Toi A, Chitayat D, Pantazi S, Blaser S. Prenatal US and MR imaging findings of lissencephaly: review of fetal cerebral sulcal development. Radiographics 2006; 26(2): 389−405.

Chen C, Chien S. Prenatal Sonographic Features of Miller-Dieker Syndrome. J Med Ultrasound 2010; 18(4): 147−52.

Saillour Y, Carion N, Quelin C, Leger P, Boddaert N, Elie C, et al. LIS1-related isolated lissencephaly: spectrum of mutations and relationships with malformation severity. Arch Neurol 2009; 66(8): 1007−15.

Uyanik G, Morris-Rosendahl DJ, Stiegler J, Klapecki J, Gross C, Ber-man Y, et al. Location and type of mutation in the LIS1 gene do not predict phenotypic severity. Neurology 2007; 69(5): 442−7.

Cardoso C, Leventer RJ, Matsumoto N, Kuc JA, Ramocki MB, Mew-born SK, et al. The location and type of mutation predict mal-formation severity in isolated lissencephaly caused by abnor-malities within the LIS1 gene. Hum Mol Genet 2000; 9(20): 3019−28.

Cardoso C, Leventer RJ, Dowling JJ, Ward HL, Chung J, Petras KS, et al. Clinical and molecular basis of classical lissencephaly: Mutations in the LIS1 gene (PAFAH1B1). Hum Mutat 2002; 19(1): 4−15.

Guerrini R, Parrini E. Neuronal migration disorders. Neurobiol Dis 2010; 38(2): 154−66.

Lockrow JP, Holden KR, Dwivedi A, Matheus MG, Lyons MJ. LIS1 duplication: expanding the phenotype. J Child Neurol 2012; 27(6): 791−5.

Verrotti A, Spalice A, Ursitti F, Papetti L, Mariani R, Castronovo A, et al. New trends in neuronal migration disorders. Eur J Paediatr Neurol 2010; 14(1): 1−12.

D'Addario V, Resta M, Greco P, Caruso G, Donatelli M. Magnetic resonance imaging of the fetal brain. In: Timor-Tritsch I, Mon-teagudo A, Cohen HL, et al, editors. Ultrasonography of the Prenatal and Neonatal Brain. Stamford, Connecticut: Appleton and Lange; 1996. p. 355−76.

Revel MP, Pons JC, Lelaidier C, Fournet P, Vial M, Musset D, et al. Magnetic resonance imaging of the fetus: a study of 20 cases performed without curarization. Prenat Diagn 1993; 13(9): 775−99.

Saltzman DH, Krauss CM, Goldman J, Benacerraf B. Prenatal diag-nosis of lissencephaly. Prenat Diagn 1991; 11(3): 139−43.

Published
2017/01/23
Section
Case report