The role of confocal scanning laser ophthalmoscopy in stereometric differentiation of eye papilla in ocular hypertension, normal tension glaucoma and primary open-angle glaucoma

  • Ranko Gvozdenović Medical Faculty, University of Belgrade, Belgrade, Serbia
  • Dusica Risovic Medical Faculty, University of Belgrade, Belgrade, Serbia; Eye Clinic, Medical Center Zvezdara, University of Belgrade, Belgrade, Serbia
  • Ivan Marjanović Medical Faculty, University of Belgrade, Belgrade, Serbia; Institute of Ophthalmology, Clinical Center of Serbia, University in Belgrade, Belgrade, Serbia
  • Miroslav Stamenković Eye Clinic, Medical Center Zvezdara, University of Belgrade, Belgrade, Serbia
  • Zorica Joković Medical Faculty, University of Belgrade, Belgrade, Serbia
  • Zihret Abazi Eye Clinic, Medical Center Zvezdara, University of Belgrade, Belgrade, Serbia
Keywords: glaucoma, open-angle, ocular hypertension, diagnosis, differential, diagnostic techniques, ophthalmological,

Abstract


Background/Aim. Primary open angle glaucoma (POAG) and normal tension glaucoma (NTG) demonstrate the same structural changes in the optic disc along with visual field defects but only POAG includes an abnormal elevation of intraocular pressure. Heidelberg retina tomograph based on confocal scanning laser ophthalmoscopy (HRT) and Moorfields regression analysis (MRA) have been employed to quantitatively assess the topography of eye papilla. We measured stereographic parameters of eye papilla in patients with POAG, NTG, and ocular hypertension (OH) using an HRT in order to determine whether HRT topographic parameters can be used to differentiate those conditions. Methods. The results of 145 eyes of 145 patients with OH, NTG and POAG were analyzed by age, refractive error, quality of HRT images, stereometric and MRA parameters. Results. Significant differences were found between NTG and other two groups for a majority of the HRT parameters, and also no differences between OH and POAG patients for a majority of the investigated parameters, except thickness of retinal nerve fiber layer. By reading the MRA no differences were found in the distribution of mostly damaged and mostly preserved neuroretinal rim sectors between NTG and POAG patients, and also all sectors of the neuroretinal rim in OH patients were preserved. Conclusion. HRT stereometric parameters are useful to differentiate patients with OH and NTG, and also for differentiation between NTG and POAG patients, but most of parameters showed no difference between OH and POAG patients. MRA may serve to confirm the diagnosis of OH, but not for precise distinction between NTG and POAG.

 

Author Biography

Ranko Gvozdenović, Medical Faculty, University of Belgrade, Belgrade, Serbia
Doktor Medicine

References

Tuulonen A, Airaksinen PJ. Initial glaucomatous optic disk and retinal nerve fiber layer abnormalities and their progression. Am J Ophthalmol 1991; 111(4): 485−90.

Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A. An evalua-tion of optic disc and nerve fiber layer examinations in moni-toring progression of early glaucoma damage. Ophthalmology 1992; 99(1): 19−28.

Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol 1982; 100(1): 135−46.

Tuulonen A, Lehtola J, Airaksinen PJ. Nerve fiber layer defects with normal visual fields. Do normal optic disc and normal visual field indicate absence of glaucomatous abnormality? Ophthalmology 1993; 100(5): 587−97; discussion 597−8.

Sommer A, Miller NR, Pollack I, Maumenee AE, George T. The nerve fiber layer in the diagnosis of glaucoma. Arch Ophthal-mol 1977; 95(12): 2149−56.

Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol 1989; 107(5): 453−64.

Sommer A, Katz J, Quigley HA, Miller NR, Robin AL, Richter RC, et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol 1991; 109: 77–83.

Airaksinen PJ, Alanko HI. Effect of retinal nerve fibre loss on the optic nerve head configuration in early glaucoma. Graefes Arch Clin Exp Ophthalmol 1983; 220(4): 193−6.

Tuulonen A, Airaksinen PJ, Montagna A, Nieminen H. Screening for glaucoma with a non-mydriatic fundus camera. Acta Oph-thalmol (Copenh) 1990; 68(4): 445−9.

Quigley HA, Miller NR, George T. Clinical evaluation of nerve fiber layer atrophy as an indicator of glaucomatous optic nerve damage. Arch Ophthalmol 1980; 98(9): 1564−71.

Quigley HA, Addicks EM. Quantitative studies of retinal nerve fiber layer defects. Arch Ophthalmol 1982; 100(5): 807−14.

Sommer A, Quigley HA, Robin AL, Miller NR, Katz J, Arkell S. Evaluation of nerve fiber layer assessment. Arch Ophthalmol 1984; 102(12): 1766−71.

Tsai CS, Zangwill L, Gonzalez C, Irak I, Garden V, Hoffman R, et al. Ethnic differences in optic nerve head topography. J Glaucoma 1995; 4(4): 248−57.

Mikelberg FS, Parfitt CM, Swindale NV, Graham SL, Drance SM, Gosine R. Ability of the heidelberg retina tomograph to detect early glaucomatous visual field loss. J Glaucoma 1995; 4(4): 242−7.

Iester M, Mikelberg FS, Drance SM. The effect of optic disc size on diagnostic precision with the Heidelberg retina tomograph. Ophthalmology 1997; 104(3): 545−8.

Wollstein G, Garway-Heath DF, Hitchings RA. Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology 1998; 105(8): 1557−63.

Garway-Heath DF, Poinoosawmy D, Wollstein G, Viswanathan A, Kamal D, Fontana L, et al. Inter- and intraobserver variation in the analysis of optic disc images: comparison of the Heidelberg retina tomograph and computer assisted planimetry. Br J Ophthalmol 1999; 83(6): 664−9.

Swindale NV, Stjepanovic G, Chin A, Mikelberg FS. Automated analysis of normal and glaucomatous optic nerve head topog-raphy images. Invest Ophthalmol Vis Sci 2000; 41(7): 1730−42.

Miglior S, Guareschi M, Albe' E, Gomarasca S, Vavassori M, Orzalesi N. Detection of glaucomatous visual field changes using the Moorfields regression analysis of the Heidelberg retina tomograph. Am J Ophthalmol 2003; 136(1): 26−33.

Coops A, Henson DB, Kwartz AJ, Artes PH. Automated analysis of heidelberg retina tomograph optic disc images by glaucoma probability score. Invest Ophthalmol Vis Sci 2006; 47(12): 5348−55.

Gvozdenovic R , Risović D, Marjanović I, Vuković D, Stanković B. Morphometric characteristics of optic disc in patients with myopia and primary open-angle glaucoma. Vojnosanit Pregl 2012; OnLine-First July (00)

Cioffi GA, Robin AL, Eastman RD, Perell HF, Sarfarazi FA, Kelman SE. Confocal laser scanning ophthalmoscope. Reproducibility of optic nerve head topographic measurements with the confocal laser scanning ophthalmoscope. Ophthalmology 1993; 100(1): 57−62.

Bowd C, Zangwill LM, Blumenthal EZ, Vasile C, Boehm AG, Gokhale PA, et al. Imaging of the optic disc and retinal nerve fiber layer: the effects of age, optic disc area, refractive error, and gender. J Opt Soc Am A Opt Image Sci Vis 2002; 19(1): 197−207.

Caprioli J. Clinical evaluation of the optic nerve in glaucoma. Trans Am Ophthalmol Soc 1994; 92: 589−641.

Chauhan BC, McCormick TA, Nicolela MT, LeBlanc RP. Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography. Arch Ophthalmol 2001; 119(10): 1492−9.

Iester M, Broadway DC, Mikelberg FS, Drance SM. A comparison of healthy, ocular hypertensive, and glaucomatous optic disc topographic parameters. J Glaucoma 1997; 6(6): 363−70.

Katz LJ, Spaeth GL, Cantor LB, Poryzees EM, Steinmann WC. Reversible optic disk cupping and visual field improvement in adults with glaucoma. Am J Ophthalmol 1989; 107(5): 485−92.

Miglior S, Casula M, Guareschi M, Marchetti I, Iester M, Orzalesi N. Clinical ability of Heidelberg retinal tomograph examination to detect glaucomatous visual field changes. Ophthalmology 2001; 108(9): 1621−7.

Mikelberg FS, Parfitt CM, Swindale NV, Graham SL, Drance SM, Gosine R. Ability of the heidelberg retina tomograph to detect early glaucomatous visual field loss. J Glaucoma 1995; 4(4): 242−7.

Raitta C, Tomita G, Vesti E, Harju M, Nakao H. Optic disc to-pography before and after trabeculectomy in advanced glau-coma. Ophthalmic Surg Lasers 1996; 27(5): 349−54.

Tsai CS, Shin DH, Wan JY, Zeiter JH. Visual field global indices in patients with reversal of glaucomatous cupping after intraocular pressure reduction. Ophthalmology 1991; 98(9): 1412−9.

Uchida H, Brigatti L, Caprioli J. Detection of structural damage from glaucoma with confocal laser image analysis. Invest Oph-thalmol Vis Sci 1996; 37(12): 2393−401.

Yamazaki Y, Yoshikawa K, Kunimatsu S, Koseki N, Suzuki Y, Matsumoto S, et al. Influence of myopic disc shape on the diagnostic precision of the Heidelberg Retina Tomograph. Jpn J Ophthalmol 1999; 43(5): 392−7.

Zangwill LM, van Horn S, de Souza Lima M, Sample PA, Weinreb RN. Optic nerve head topography in ocular hypertensive eyes using confocal scanning laser ophthalmoscopy. Am J Oph-thalmol 1996; 122(4): 520−5.

Yamagami J, Araie M, Shirato S. A comparative study of optic nerve head in low- and high-tension glaucomas. Graefes Arch Clin Exp Ophthalmol 1992; 230(5): 446−50.

Kiriyama N, Ando A, Fukui C, Nambu H, Nishikawa M, Terauchi H, et al. A comparison of optic disc topographic parameters in patients with primary open angle glaucoma, normal tension glaucoma, and ocular hypertension. Graefes Arch Clin Exp Ophthalmol 2003; 241(7): 541−5.

Iester M, Mikelberg FS. Optic nerve head morphologic charac-teristics in high-tension and normal-tension glaucoma. Arch Ophthalmol 1999; 117(8): 1010−3.

Marković V, Kontić D, Hentova-Sencanić P, Bozić M, Marjanović I, Krstić V, et al. Contribution and significance of Heidelberg Retinal Tomography II in diagnostics of ocular hypertension and its conversion into primary open-angle glaucoma. Vojno-sanit Pregl 2009; 66(4): 283−9. (Serbian)

Published
2017/01/19
Section
Original Paper