Savojna čvrstoća i modul elastičnosti autopolimerizovanog polimetilmetakrilata sa nanočesticama silicijum-dioksida

  • Sebastian Baloš University of Novi Sad, Faculty of Technical Sciences, *Department for Production Engineering
  • Branka Pilić Faculty of Technology, Department of Materials Engineering
  • Djordje Petrović Faculty of Medicine
  • Branislava Petronijević
  • Ivan Šarčev Faculty of Medicine
Ključne reči: metilmetakrilati;, akrilati;, zubna proteza, podlaganje;, materijali, testiranje;, stres, mehanički;, silicijum dioksid;, elastičnost;, kalorimetrija

Sažetak


Uvod/Cilj. Autopolimerizujući ili hladno polimerizujući polimetilmetakrilatni materijali imaju niže mehaničke osobine u odnosu na toplo polimerizujuće polimetilmetakrilate, zbog ograničenog trajanja mešanja pre početka procesa polimerizacije. Cilj ovog rada bio je da se ispita efekat relativno niskih sadržaja nanosilike u cilju povećanja mehaničkih osobina hladno polimerizujućeg polimetilmetakrilata. Metode. U tečnu metilmetakrilat komponentu komercijalnog auto­poli­merizujućeg polimetilmetakrilatnog materijala za podlaganje zubnih proteza umešane su nanočestice veličine 7 nm, a potom je modifikovana tečnost pomešana sa prahom polimetilmetakrilata. Ispitana su tri sadržaja nanosilike: 0,05%, 0,2% i 1,5%. Izvršena su ispitivanja modula elastičnosti i čvrstoće. Rezultati su statistički analizirani uz primenu jednostruke statističke analize ANOVA i Tukey-testom. Ta­kođe, izvršeno je merenje zeta potencijala tečne komponente, diferencijalna skenirajuća kalorimetrija, skenirajuća elektronska mikroskopija i energetska disperzivna rentdenska analiza. Rezultati. Modul elastičnosti i čvrstoća bili su statistički značajno povećani dodatkom 0,05% nano-SiO2. Povećanje sadržaja nanosilike na 1,5% nije doprinelo po­većanju ispitivanih mehaničkih osobina, naprotiv. Osnovni razlog bio je pojava aglomeracije, pre mešanja praha i tečne komponente, dokazana merenjem zeta-potencijala, kao i nakon mešanja, a dokazana je skenirajućom elektronskom mikroskopijom i energetskom disperzivnom rendgenskom analizom. Zaključak. Najefikasniji sadržaj nanosilike za povećanje modula elastičnosti i čvrstoće autopolimerizovanog polimetilmetakrilata je 0,05 %.

Reference

Stamenković D, Obradović-Đuričić K, Beloica D, Leković V, Ivanović V, Pavlović G, et al. Dentla materials. Belgrade: Zavod za udžbenike i nastavna sredstva; 2003. (Serbian)

Odian G. Principles of Polymerization. New York: Wiley-Inter¬science; 2004.

Tallgren A. The continuing reduction of the residual alveolar ridges in complete denture wearers: A mixed-longitudinal study covering 25 years. 1972. J Prosthet Dent 2003; 89(5): 427‒35.

Fujii K. Fatigue properties of acrylic denture base resins. Dent Mater J 1989; 8(2): 243‒59.

Lee SY, Lai YL, Hsu TS. Influence of polymerization condi-tions on monomer elution and microhardness of autopoly-merized polymethyl methacrylate resin. Eur J Oral Sci 2003; 110(2): 179‒83.

Fletcher AM, Purnaveja S, Amin WM, Ritchie GM, Moradians S, Dodd AW. The level of residual monomer in self-curing den-ture-base materials. J Dent Res 1983; 62(2): 118‒20.

Lamb DJ, Ellis B, Priestley D. The effects of process variables on levels of residual monomer in autopolymerizing dental acrylic resin. J Dent 1983; 11(1): 80‒8.

Thostenson ET, Chou TW. Microwave processing: fundamentals and applications. Compos Part A 1999; 30: 1055‒71.

Blagojevic V, Murphy VM. Microwave polymerization of denture base materials. A comparative study. J Oral Rehabil 1999; 26(10): 804‒8.

Vergani CE, Seiko SR, Pavarina AC, dos Santos Nunes Reis JM. Flexural strength of autopolymerizing denture reline resins with microwave postpolymerization treatment. J Prosthet Dent 2005; 93(6): 577‒83.

Balos S, Balos T, Sidjanin L, Markovic D, Pilic B, Pavlicevic J. Study of PMMA biopolymer properties treated with microwave en¬ergy. Mater Plast 2011; 48(2): 127‒31.

Balos S, Balos T, Sidjanin L, Markovic D, Pilic B, Pavlicevic J. Flex¬ural and impact strength of microwave treated autopolimerized poly (methyl-methacrylate). Mater Plast 2009; 46(3): 261‒5.

Carlos NB, Harrison A. The effect of untreated UHMWPE beads on some properties of acrylic resin denture base mate-rial. J Dent 1997; 25(1): 59‒64.

Chow WS, Tay HK, Azlan A, Mohd Ishak ZA Mechanical And Thermal Properties Of Hydroxyapatite Filled Poly (Methyl Methacrylate) Composites. Proceedings of the Polymer Proc-essing Society 24th Annual Meeting ~ PPS-24 ~ 2008 June 15-19; Salerno (Italy).

Chow WS, Khim LYA, Azlan A, Ishak ZAM. Flexural proper-ties of hydroxyapatite reinforced poly(methyl methacrylate) composite. J Reinf Plast Compos 2008; 27(9): 945‒52.

Ayad NM, Badawi MF, Fatah AA. Effect of reinforcement of high-impact acrylic resin with zirconia on some physical and mechanical properties. Rev Clin Pesq Odontol 2008; 4(3): 145‒51.

Ellakwa AE, Morsy MA, El-Sheikh AM. Effect of aluminum ox¬ide addition on the flexural strength and thermal diffusivity of heat-polymerized acrylic resin. J Prosthodont 2008; 17(6): 439‒44.

Alhareb AO, Ahmad ZA. Effect of Al2O3/ZrO2 reinforce-ment on the mechanical properties of PMMA denture base. J Reinf Plast Comp 2011; 30(1): 86‒93.

Balos S, Pilic B, Petronijevic B, Markovic D, Mirkovic S, Sarcev I. Im¬proving mechanical properties of flowable dental composite resin by adding silica nanoparticles. Vojnosanit Pregl 2013; 70(5): 477‒83.

Balos S, Pilic B, Markovic D, Pavlicevic J, Luzanin O. Poly(methyl-methacrylate) nanocomposites with low silica addition. J Prosthet Dent 2014; 111(4): 327‒34.

Wilson KS, Antonucci JM. Interphase structure-property rela-tion¬ships in thermoset dimethacrylate nanocomposites. Dent Mater 2006; 22(11): 995‒1001.

Sivaraman P, Chandrasekhar L, Mishra VS, Chakraborty BC, Varghese TO. Fracture toughness of thermoplastic co-poly (ether ester) elastomer: Acrylonitrile butadiene styrene ter-polymer blends. Polym Test 2006; 25(4): 562‒7.

Bansal A, Yang CL, Benicewicz BC, Kumar SK, Schadler LS. Con¬trolling the thermomechanical properties of polymer nano¬composites by tailoring the polymer-particle interface. J Po¬lymSci Pol Phys 2006; 44(20): 2944‒50.

Bera O, Pavlicevic J, Jovicic M, Stoiljkovic D, Pilic B, Radicevic R. The Influence of nanosilica on styrene free radical polymerization kinetics. Polym Composite 2012; 33(2): 262‒6.

Fragiadakis D, Pissis P, Bokobza L. Glass transition and molecu¬lar dynamics in poly (dimethylsiloxane)/silica nanocomposites. Polymer 2005; 46(16): 6001‒8.

Khare HS, Burris DL. A quantitative method for measuring nano¬composite dispersion. Polymer 2010; 51(3): 719‒29.

Bera O, Pilic B, Pavlicevic J, Jovicic M, Hollo B, Meszaros Szecsenyi K, et al. Preparation and thermal properties of polystyrene/silica nanocomposites. Thermochim Acta 2011; 515: 1‒5.

Elshereksi NW, Mohamed SH, Arifin A, Mohd Ishak ZA. Effect of filler incorporation on the fracture toughness properties of denture base poly(methyl methacrylate). J Phys Sci 2009; 20: 1‒12.

Objavljeno
2020/12/02
Rubrika
Originalni članak