Napredne tehnike magnetne rezonance u ranom razdvajanju pseudoprogresije od progresije kod bolesnika sa glioblastomom multiforme
Sažetak
Uvod/Cilj. Uvođenje tretmana glioblastoma zračnom terapijom uz konkurentnu i adjuvantnu primenu temozolomida (CRT) dovelo je do pojave nove dijagnostičke dileme – potrebe za razlikovanjem pseudo-progresije i presudoodgovora. Razlikovanje snimaka magnetne resonance (MR) ova dva fenomena za sada je moguće samo evaluacijom u više vremenskih tačaka u toku terapije, dok nove tehnike koje bi pomogle u njihovom razlikovanju nisu još uvedene. U radu je analizirana mogućnost primene time-to-peak (TTP) mapa dinamičkog perfuzionog imidžinga i magnetno rezonantne spektroskopije u utvrđivanju odgovora tumora na terapiju. Metode. Analizirano je 40 bolesnika sa primarnim glioblastomom multiforme. Bolesnici su snimani u trećoj nedelji nakon operacije i desetoj nedelji od početka CRT. Pregledi na aparatu za MR rađeni su na aparatu 1.5 T Avanto Siemens, Erlangen Nemačka. Mape perfuzionih parametara generisane su i analizirane korišćenjem programa DPtools v3.79. 3D CSI PRESS spektroskopija sa dugim i kratkim vremenom eha rađena je kod svih bolesnika. Rezultati. Kod 32 od 40 bolesnika dijagnostikovana je progresija bolesti, a kod osam je dijagnostikovana pseudo-progresija. Kod bolesnika sa progresijom bolesti dobijene time-to-peak vrednosti su bile 33 ± 7 s u trećoj nedelji i 30 ± 5 s u desetoj nedelji, što ne predstavlja statistički značajnu razliku. Vrednosti ovog parametra za pseudoprogresiju bile su 32 ± 8 s u trećoj i 43 ± 9 s u desetoj nedelji što je statistički značajna razlika (p < 0.05). Rezultati spektroskopije ukazali su na prisustvo glicinskog pika kod šest bolesnika sa progresijom bolesti, dok kod pseudoprogresije ovaj metabolit nije bio prisutan. Zaključak. Analizirani MR snimci pokazali su da je MR veoma uspešna tehniku za postavljanje dijagnoze progresije bolesti tokom terapije kod bolesnika sa glioblastomom.
Reference
Easaw JC, Mason WP, Perry J, Laperriere N, Eisenstat DD, del Maestro R, et al. Canadian recommendations for the treatment of recurrent or progressive glioblastoma multiforme. Curr. Oncol 2011; 18(3): e126‒36.
Carlsson SK, Brothers SP, Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med 2014; 6(11): 1359‒70.
Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG. Re-sponse criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990; 8(7): 1277‒80.
Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen GA, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J Clin Oncol 2010; 28(11): 1963‒72.
Gahramanov S, Raslan AM, Muldoon LL, Hamilton BE, Rooney WD, Varallyay CG, et al. Potential for differentiation of pseudoprogression from true tumor progression with dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging using ferumoxytol vs. gadoteridol: a pilot study. Int J Radiat Oncol Biol Phys 2011; 79(2): 514‒23.
Morris JG, Grattan-Smith P, Panegyres PK, O'Neill P, Soo YS, Langlands AO. Delayed cerebral radiation necrosis. Quarterly J Med 1994; 87(2): 119‒29.
Hygino da Cruz LC Jr, Rodriguez I, Domingues RC, Gasparetto EL, Sorensen AG. Pseudoprogression and pseudoresponse: im-aging challenges in the assessment of posttreatment glioma. AJNR Am J Neuroradiol 2011; 32(11): 1978‒85.
Chu HH, Choi SH, Ryoo I, Kim SC, Yeom JA, Shin H, et al. Dif-ferentiation of true progression from pseudoprogression in gli-oblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. Radiology 2013; 269(3): 831‒40.
Suh CH, Kim HS, Choi YJ, Kim N, Kim SJ. Prediction of pseu-doprogression in patients with glioblastomas using the initial and final area under the curves ratio derived from dynamic contrast-enhanced T1-weighted perfusion MR imaging. AJNR Am J Neuroradiol 2013; 34(12): 2278‒86.
Barajas RF Jr, Chang JS, Segal MR, Parsa AT, McDermott MW, Berger MS, et al. Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radia-tion therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 2009; 253(2): 486‒96.
Verma N, Cowperthwaite MC, Burnett MG, Markey MK. Differ-entiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro Oncol 2013; 15(5): 515‒34.
Song YS, Choi SH, Park CK, Yi KS, Lee WJ, Yun TJ, et al. True progression versus pseudoprogression in the treatment of glio-blastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analy-sis. Korean J Radiol 2013; 14(4): 662‒72.
Kong DS, Kim ST, Kim EH, Lim DH, Kim WS, Suh YL, et al. Diagnostic dilemma of pseudoprogression in the treatment of newly diagnosed glioblastomas: the role of assessing relative cerebral blood flow volume and oxygen-6-methylguanine-DNA methyltransferase promoter methylation status. AJNR Am J Neuroradiol 2011; 32(2): 382‒7.
Young RJ, Gupta A, Shah AD, Graber JJ, Chan TA, Zhang Z, et al. MRI perfusion in determining pseudoprogression in pa-tients with glioblastoma. Clin Imaging 2013; 37(1): 41‒9.
Mangla R, Singh G, Ziegelitz D, Milano MT, Korones DN, Zhong J, et al. Changes in relative cerebral blood volume 1 month af-ter radiation-temozolomide therapy can help predict overall survival in patients with glioblastoma. Radiology 2010; 256(2): 575‒84.
Hu LS, Eschbacher JM, Heiserman JE, Dueck AC, Shapiro WR, Liu S, et al. Reevaluating the imaging definition of tumor progression: Perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival. Neuro Ooncol 2012; 14(7): 919‒30.
Baek HJ, Kim HS, Kim N, Choi YJ, Kim YJ. Percent change of perfusion skewness and kurtosis: A potential imaging bi-omarker for early treatment response in patients with newly diagnosed glioblastomas. Radiology 2012; 264(3): 834‒43.
Cha J, Kim ST, Kim HJ, Kim B, Kim JK, Lee JY, et al. Differen-tiation of Tumor Progression from Pseudoprogression in Pa-tients with Posttreatment Glioblastoma Using Multiparamet-ric Histogram Analysis. Am J Neuroradiol 2014; 35(7): 1309‒17.
Tsien C, Galbán CJ, Chenevert TL, Johnson TD, Hamstra DA, Sundgren PC, et al. Parametric response map as an imaging bi-omarker to distinguish progression from pseudoprogression in high-grade glioma. J Clin Oncol 2010; 28(13): 2293‒920.
Nasel C, Azizi A, Veintimilla A, Mallek R, Schindler E. A standardized method of generating time-to-peak perfusion maps in dynamic-susceptibility contrast-enhanced MR imag-ing. AJNR Am J Neuroradiol 2000; 21(7): 1195‒8.
Neumann-Haefelin T, Wittsack HJ, Wenserski F, Siebler M, Seitz RJ, Mödder U, et al. Diffusion- and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke. Stroke 1999; 30(8): 1591‒7.
Brandes AA, Tosoni A, Spagnolli F, Frezza G, Leonardi M, Calbucci F, et al. Disease progression or pseudoprogression af-ter concomitant radiochemotherapy treatment: Pitfalls in neu-rooncology. Neuro Oncol 2008; 10(3): 361‒7.
Sundgren PC. MR Spectroscopy in Radiation Injury. Am J Neu-roradiol 2009; 30(8): 1469‒76.
Ye ZC, Sontheimer H. Glioma cells release excitotoxic concen-trations of glutamate. Cancer Res 1999; 59(17): 4383‒91.
Ye ZC, Rothstein JD, Sontheimer H. Compromised glutamate transport in human glioma cells: Reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activ-ity of cystine-glutamate exchange. J Neurosci 1999; 19(24): 10767‒77.
Righi V, Andronesi OC, Mintzopoulos D, Black PM, Tzika AA. High-resolution magic angle spinning magnetic resonance spectroscopy detects glycine as a biomarker in brain tumors. Int J Oncol 2010; 36(2): 301‒6.
Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, et al Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differ-entiating tumor recurrence from nonneoplastic contrast-enhancing tissue. AJNR Am J Neuroradiol 2000; 21(5): 901‒9.
Leimgruber A, Ostermann S, Yeon EJ, Buff E, Maeder PP, Stupp R, et al. Perfusion and diffusion MRI of glioblastoma pro-gression in a four-year prospective temozolomide clinical trial. Int J Radiat Oncol Biol Phys 2006; 64: 869‒75.
Gahramanov S, Muldoon LL, Varallyay CG, Li X, Kraemer DF, Fu R, et al. Pseudoprogression of glioblastoma after chemo- and radiation therapy: Diagnosis by using dynamic susceptibil-ity-weighted contrast-enhanced perfusion MR imaging with ferumoxytol versus gadoteridol and correlation with survival. Radiology 2013; 266(3): 842‒52.
Cha S, Yang L, Johnson G, Lai A, Chen MH, Tihan T, et al. Comparison of Microvascular Permeability Measurements, Ktrans, Determined with Conventional Steady-State T1-Weighted and First-Pass T2*-Weighted MR Imaging Methods in Gliomas and Meningiomas. Am J Neuroradiol 2006; 27(2): 409‒17.
Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, Zagzag D, et al. Comparison of Cerebral Blood Volume and Vascular Per-meability from Dynamic Susceptibility Contrast-Enhanced Perfusion MR Imaging with Glioma Grade. AJNR Am J Neu-roradiol 2004; 25(5): 746‒55.
Rempp KA, Brix G, Wenz F, Becker CR, Gückel F, Lorenz WJ. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994; 193(3): 637‒41.
Lehnhardt F, Bock C, Röhn G, Ernestus R, Hoehn M. Metabolic differences between primary and recurrent human brain tu-mors: A 1H NMR spectroscopic investigation. NMR Biomed 2005; 18(6): 371‒82.
Ken S, Vieillevigne L, Franceries X, Simon L, Supper C, Lotterie JA, et al. Integration method of 3D MR spectroscopy into treatment planning system for glioblastoma IMRT dose paint-ing with integrated simultaneous boost. Radiat Oncol 2013;8: 1.
Chinnaiyan P, Kensicki E, Bloom G, Prabhu A, Sarcar B, Kahali S, et al. The metabolomic signature of malignant glioma reflects accelerated anabolic metabolism. Cancer Res 2012; 72(22): 5878‒88.
Hattingen E, Lanfermann H, Quick J, Franz K, Zanella FE, Pilatus U. 1H MR spectroscopic imaging with short and long echo time to discriminate glycine in glial tumours. MAGMA 2009; 22(1): 33‒41.
Tugnoli V, Tosi MR, Barbarella G, Bertoluzza A, Ricci R, Trevis-an C. In vivo 1H MRS and in vitro multinuclear MR study of human brain tumors. Anticancer Res. 1996; 16(5A): 2891‒9.
Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012; 336(6084): 1040‒4.
