Procena pola metričkom analizom tomografskih trodimenzionalnih snimaka proksimalnog femura u populaciji Španije
Sažetak
Apstrakt
Uvod/Cilj. Studije objavljene poslednjih godina pokazale su da linearna merenja na trodimenzionalnim tomografskim snimcima (3D-CT) lobanje, karlične ili grudne kosti pacijenata mogu poslužiti kao pouzdana alternativna metoda za procenu pola. Uprkos tome što je proksimalni okrajak butne kosti pokazao visok dimorfizam prilikom analize skeletnog materijala, još uvek nema dovoljno morfometrijskih studija 3D snimaka te anatomske regije koje bi potvrdile relevantnost prethodno dobijenih rezultata. Cilj rada bio je da se ispita pouzdanost i preciznost merenja proksimalnog femura pomoću in vivo načinjenih 3D-CT snimaka modela. Metode. Ukupno 146 tomografskih snimaka pacijenata (73 muškarca i 73 žene) odabrani su za 6 merenja uz primenu tradicionalnih osteometrijskih metoda. Posredstvom softvera Oziriks (verzija 4.1) urađena je 3D rekonstrukcija na slajsovima debljine 1 mm i 1,25 mm. Preciznost CT merenja u korelaciji je sa merenjima dobijenim u tradicionalnim morfometrijskim studijama kostiju femura modernih populacija. U poređenju sa dvodimenzionalnom, znatno viši procenat preciznosti u određivanju pola postignut je korišćenjem trodimenzionalne tehnike. Rezultati. Ustanovljeno je da su vertikalni prečnik vrata i vertikalni prečnik glave femura, analizirani pojedinačno, dali najbolje rezultate u utvrđivanju pola (90,4%–91,8%). U kombinaciji sa ostalim dimenzijama, njihova preciznost porasla je na 97,3%. Zaključak. Za objektivnu kvantifikaciju osteoloških podataka CT je prikladna tehnika. Klinički snimci i in vivo merenja pružaju validan izvor podataka pogodan za izradu pouzdanih standarda za procenu pola, čak i iz fragmentiranih ostataka. Metod koji se ovde predlaže može biti od izuzetne koristi u identifikaciji žrtava masovnih katastrofa kada maceracija ostataka i direktna osteometrijska merenja ne mogu biti opcija.
Reference
REFERENCES
Purkait R, Heeresh CH. A study of sexual variation in Indian femur. Forensic Sci Int 2004; 146(1): 25–33.
Seeman E, Delmas PD. Bone quality - the material and structural basis of bone strength and fragility. N Engl J Med 2006; 354(21): 2250–61.
Purkait R. Triangle identified at the proximal end of femur: a new sex determinant. Forensic Sci Int 2005; 147(2): 135–9.
Djorojevic M, Roldán C, Botella M, Alemán I. Estimation of Pur-kait’s triangle method and alternative models for sex assess-ment from the proximal femur in the Spanish population. Int J Legal Med 2015; 130(1): 245–51.
Cardoso HF, Cunha E. On the applicability of some femur measurements for sex diagnosis. In: Varela TA, editor. Investigaciones en biodiversidad humana. Santiago de Compostela: University of Santiago de Compostela; 2000. p. 208–13.
Alunni-Perret V, Staccini P, Quatrehomme G. Re-examination of a measurement for sexual determination using the suproinferior femoral neck diameter in a modern European population. J Forensic Sci 2003; 48(3): 517–20.
Trancho GJ, Robledo B, López-Bueis I, Sánchez JA. Sexual determination of the femur using discriminant functions. Analysis of a Spanish population of known sex and age. J Forensic Sci 1997; 42: 181–5.
Frutos, LR. Brief communication: Sex determination accuracy of the minimum superoinferior femoral neck diameter in a contemporary rural Guatemalan population. Am J Phys Anth-ropol 2003; 122(2): 123–6.
King CA, Iscan MY, Loth SR. Metric and comparative analysis of sexual dimorphism in the Thai femur. J Forensic Sci 1998; 43(5): 954–8.
Stojanowski CM, Seidemann RM. A reevaluation of the sex pre-diction accuracy of the minimum supero-inferior femoral neck diameter for modern individuals. J Forensic Sci 1999; 44(6): 1215–8.
Mostafa EM, El-Elemi AH, El-Beblawy MA, Dawood AE. Adult sex identification using digital radiographs of the proximal epiphysis of the femur at Suez Canal University Hospital in Ismailia, Egypt. Egypt J Forensic Sci 2012; 2(3): 81–8.
Mitra A, Khadijeh B, Vida AP, Ali RN, Farzaneh M, Maryam VF, et al. Sexing based on measurements of the femoral head parameters on pelvic radiographs. J Forensic Leg Med 2014; 23: 70–5.
Harma A, Karakas HM. Determination of sex from the femur in Anatolian Caucasians: a digital radiological study. J Forensic Leg Med 2007; 14(4): 190‒4.
Kranioti EF, Vorniotakis N, Galiatsou C, İşcan MY, Michalodimi-trakis M. Sex identification and software development using digital femoral head radiographs. Forensic Sci Int 2009; 189(1): 113.e1–7.
Ruiz Mediavilla E, Perea Pérez B, Labajo González E, Sánchez Sánchez JA, Santiago Sáez A, Dorado Fernández D. Determining sex by bone volume from 3D images: discriminating analysis of the tali and radii in a contemporary Spanish reference collection. Int J Legal Med 2012; 126(4): 623–31.
Djorojevic M, Roldán C, García-Parra P, Alemán I, Botella M. Morphometric sex estimation from 3D computed tomography os coxae model and its validation in skeletal remains. Int J Legal Med 2014; 128(5): 879–88.
García-Parra P, Pérez Fernández A, Djorojevic M, Botella M, Alemán I. Sexual dimorphism of human sternum in a contemporary Spanish population. Forensic Sci Int 2014; 244: 313.e1‒9.
Gulhan O, Harrison K, Kiris A. A new computer-tomography-based method of sex estimation: development of Turkish population-specific standards. Forensic Sci Int 2015; 255: 2–8.
Clavero A, Salicrú M, Turbón D. Sex prediction from the femur and hip bone using a sample of CT images from a Spanish population. Int J Legal Med 2015; 129(2): 373–83.
De Abajo FJ, Feito L, Júdez J, Martín MC, Terracini B, Pàmpols T, et al. Directrices éticas sobre la creación y uso de registros con fines de investigación biomédica. Rev Esp Salud Pública 2008; 82(1): 21–42.
Schumann S, Tannast M, Nolte LP, Zheng G. Validation of statis-tical shape model based reconstruction of the proximal femur - a morphology study. Med Eng Phys 2010; 32(6): 638–44.
Martin R, Saller K. Lehrbuch der Anthropologie ‒ in systema-tischer Darstellung. Stuttgart: Gustav Fischer; 1957.
Osorio H, Schorwer K, Coronado C, Delgado J, Aravena P. Proximal femoral epiphysis anatomy in Chilean population. Orthopedic and forensic aspects. Int J Morphol 2012; 30(1): 258–62.
Ulijaszek SJ, Kerr DA. Anthropometric measurement error and the assessment of nutritional status. Br J Nutr 1999; 82(3): 165–77.
Perini TA, De Oliveira GL, Ornellas JD, Oliveira FP. Technical error of measurement in anthropometry. Rev Bras Med Esporte 2005; 11(1): 81–5.
Weinberg SM, Scott NM, Neiswanger K, Brandon CA, Marazita ML. Digital three-dimensional photogrammetry: evaluation of anthropometric precision and accuracy using a Genex 3D camera system. Cleft Palate Craniofac J 2004; 41(5): 507–18.
Rubin PJ, Leyvraz PE, Aubagniac JM, Estève P, de Roguin B. The morphology of the proximal femur: a three-dimensional radio-graphic analysis. J Bone Joint Surg Br 1992; 74(1): 28–32.