Postmortalne vrednosti serotonina u cerebrospinalnoj tečnosti kao marker porekla smrti
Sažetak
Uvod/Cilj. Serotonin [5-hidroksitriptamin (5-HT)], kao neurotransmiter u centralnom nervnom sistemu (CNS), uključen je u regulaciju autonomnih i kognitivnih funkcija, obrade senzornih informacija, motorne aktivnosti, emocija, raspoloženja i gotovo svakog oblika ponašanja. U sudskomedicinskoj istrazi, 5-HT je proučavan u različitim telesnim tečnostima u odnosu na uzrok smrti, a posebno u vezi sa samoubistvima, zloupotrebom droga ili kao marker akutnog odgovora na stres. Cilj ove studije bio je utvrđivanje nivoa 5-HT u cerebrospinalnoj tečnosti, kao markera njegove centralne aktivnosti tokom procesa umiranja, u smrtima različitog porekla, a posebno u slučajevima gde su žrtve bile svesne stresnog događaja. Metode. Istraživanje je sprovedeno na postmortalnim uzorcima 81 likvora uzetih tokom obdukcije. Koncentracije 5-HT su određivane u odnosu na prirodno i nasilno (zadesno, samoubilačko i ubilačko) poreklo smrti. Nakon pripreme, uzorci su analizirani metodom tečne hromatografije sa tandem masenom spektrometrijom. Rezultati. Vrednosti 5-HT su bile značajno više u slučajevima nasilnih smrti u odnosu na prirodne smrti (U = 519,000; p < 0.05). Utvrđene su razlike u srednjim vrednostima 5-HT između različitih uzroka smrti (usled trovanja, povređivanja dejstvom tupine, šiljka i oštrice, a niže u hipotermiji i srčanoj smrti). Vrednosti 5-HT značajno su se razlikovale među grupama (χ2 = 13,354; p = 0.001, sa tendencijom sniženja sa godinama. Nisu utvrđene razlike u odnosu na pol, dužinu agonije i svesnost o nastupajućem smrtnom ishodu. Vrednosti su imale tendenciju rasta sa dužinom postmortalnog intervala, ali se to nije pokazalo statistički značajnim. Zaključak. Serotonin bi mogao biti koristan postmortalni biohemijski marker u razlikovanju prirodnih i nasilnih smrti, uprkos velikim individualnim varijacijama.
Reference
Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM. Serotonin: a review. J Vet Pharmacol Ther 2008; 31(3): 187–99.
Arranz B, Blennow K, Eriksson A, Maånsson J, Marcusson J. Sero-ton¬ergic, noradrenergic, and dopaminergic measures in suicide brains. Biol Psychiatry 1997; 41(10): 1000–9.
Chieko O, Akiko S, Masao M, Kinya K. Alteration of the turn-over of dopamine and 5-hydroxytryptamine in rat brain asso-ci¬ated with hypothermia. Pharmacol Biochem Behav 1986; 24(1): 79–83.
Audhya T, Adams JB, Johansen L. Correlation of serotonin lev-els in CSF, platelets, plasma, and urine. Biochim Biophys Acta 2012; 1820(10): 1496–501.
Quan L, Ishikawa T, Hara J, Michiue T, Chen J, Wang Q, et al. Postmortem serotonin levels in cerebrospinal and pericardial fluids with regard to the cause of death in medicolegal autop-sy. Leg Med 2011; 13(2): 75–8.
Musshoff F, Menting T, Madea B. Postmortem serotonin (5-HT) concentrations in the cerebrospinal fluid of medicolegal cases. Forensic Sci Int 2004; 142(2–3): 211–9.
Kauert G, Zucker T, Gilg T, Eisenmenger W. Measurements of Bio¬genic Amines and Metabolites in the CSF of Suicide Vic-tims and Nonsuicides. In: Möller H, Schmidtke A, Welz R, edi-tors. Current Issues of Suicidology. Berlin, Heidelberg: Spring-er; 1988. p. 252–62.
Mahar I, Bambico FR, Mechawar N, Nobrega JN. Stress, sero-tonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev 2014; 38: 173–92.
Vaessen T, Hernaus D, Myin-Germeys I, van Amelsvoort T. The dopaminergic response to acute stress in health and psycho-pathology: a systematic review. Neurosci Biobehavl Rev 2015; 56: 241–51.
Joëls M, Baram TZ. The neuro-symphony of stress. Nat Rev Neu¬rosci 2009; 10(6): 459–66.
Arroyo A, Rosel P, Marron T. Cerebrospinal fluid: postmortem biochemical study. J Clin Forensic Med 2005; 12(3): 153–6.
Connolly AJ, Finkbeiner WE, Ursell PC, Davis RL. Autopsy pa-thol¬ogy:a manual and atlas. 3rd ed. Philadelphia, PA: El¬sevier; 2016.
Forrest AR. ACP Broadsheet no 137: April 1993. Obtaining sam¬ples at post mortem examination for toxicological and bi-o¬chemical analyses. J Clin Pathol 1993; 46(4): 292–6.
Pyo W, Jo C, Myung S. An Effective High-Performance Liquid Chromatographic–Mass Spectrometric Assay for Catechola-mines, as the N(O,S)-Ethoxycarbonyl Ethyl Esters, in Human Urine. Chromatographia 2006; 64(11–12): 731–7.
Wang J, Huang Z, Gage DA, Watson J. Analysis of amino acids by gas chromatography – flame ionization detection and gas chromatography – mass spectrometry: Simultaneous derivati-zation of functional groups by an aqueous-phase chlorofor-mate-mediated reaction. J Chromatogr A 1994; 663(1): 71–8.
Hensler JG. Serotonin. In: Brady ST, Siegel GJ, Albers RW, Price DL, editors. Basic Neurochemistry - Principles of Molecular, Cellular and Medical Neurobiology. 8th ed. Amsterdam: El-sevier BV; 2012. p. 300–22.
Sakka L, Coll G, Chazal J. Anatomy and physiology of cere-bro¬spinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis 2011; 128(6): 309–16.
Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silver-berg GD. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 2008; 5(1): 10.
Malm J, Kristensen B, Ekstedt J, Wester P. CSF concentration gradi¬ents of monoamine metabolites in patients with hydro-cephalus. J Neurol Neurosurg Psychiatry 1994; 57(9): 1026–33.
Olivier B. Serotonin: A never-ending story. Eur J Pharmacol 2015; 753: 2–18.
Sjostrom R, Ekstedt J, Anggard E. Concentration gradients of monoamine metabolites in human cerebrospinal fluid. J Neu-rol Neurosurg Psychiatry 1975; 38(7): 666–8.
Loonen AJ, Ivanova SA. Circuits regulating pleasure and happi-ness in major depression. Med Hypotheses 2016; 87: 14–21.
