Supresorske ćelije mijeloidnog porekla u sekundarnoj sepsi: postoji li povezanost sa smrtnim ishodom?

  • Ivo Udovičić Military Medical Academy, Clinic of Anesthesiology and Intensive Therapy, Belgrade, Serbia
  • Maja Šurbatović Military Medical Academy, Clinic of Anesthesiology and Intensive Therapy, Belgrade, Serbia
  • Goran Rondović Military Medical Academy, Clinic of Anesthesiology and Intensive Therapy, Belgrade, Serbia
  • Ivan Stanojević University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
  • Snježana Zeba Military Medical Academy, Clinic of Anesthesiology and Intensive Therapy, Belgrade, Serbia
  • Dragan Djordjević Military Medical Academy, Clinic of Anesthesiology and Intensive Therapy, Bel gra de, Serbia
  • Ana Popadić Military Medical Academy, Clinic of Anesthesiology and Intensive Therapy, Belgrade, Serbia
  • Snežana Milosavljević Clinical Hospital Center Kosovska Mitrovica, Department of Anesthesiology, Kosovska Mitrovica, Serbia
  • Nikola Stanković Mother And Child Health Care Institute of Serbia „ Dr. Vukan Čupić“, Department of Anesthesiology and Intensive Therapy, Belgrade, Serbia
  • Džihan Abazović Emergency Medical Centar of Montenegro, Podgorica, Montenegro
  • Danilo Vojvodić University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
Ključne reči: kostna srž, ćelije, kostna srž, ćelije, supresorske, mortalitet, prognoza, sepsa, lečenje, ishod

Sažetak


Uvod/Cilj. Uloga supresorskih ćelija mijeloidnog porekla (MDSCs) u imunskom odgovoru bolesnika sa sepsom tek treba da bude razjašnjena kod ljudi. Cilj istraživanja je bio da se utvrdi da li kod kritično obolelih sa sekundarnom sepsom i/ili septičkim šokom postoji udruženost učestalosti i/ili apsolutnih brojeva MDSCs sa ishodom bolesti. Metode. U prospektivnu studiju je bilo uključeno ukupno 40 kritično obolelih pacijenata sa sekundarnom sepsom. Detektovane su i kvantifikovane obe glavne podvrste MDSCs: granulocitna (G)-MDSCs i monocitna (M)-MDSCs, po prijemu na bolničko lečenje (prvi dan) i petog dana posle prijema. Primarni ishod je bio bolnički mortalitet. Rezultati. Veća učestalost i apsolutni brojevi subpopulacija koje odgovaraju MDSCs bili su udruženi sa lošim ishodom. Što se relativne kinetike tiče, i kod preživelih i kod umrlih, trajanje sepse od prvog do petog dana bilo je praćeno povećanjem vrednosti MDSCs u obe ispitivane subpopulacije. Multivarijantna logistička regresiona analiza je pokazala da su, za razliku od prvog dana, petog dana the Sequential Organ Failure Assessment (SOFA) skor (OR 2.350; p < 0,05) i frekvenca G-MDSCs (OR 3.575; p < 0,05) bili nezavisni prediktori letalnog ishoda. Zaključak. Ovi nalazi ukazuju na štetnu ulogu MDSCs u sekundarnoj sepsi.

Biografija autora

Ivo Udovičić, Military Medical Academy, Clinic of Anesthesiology and Intensive Therapy, Belgrade, Serbia

Odsek za lečenje kritično obolelih i povređenih pacijenata, anesteziolog

Reference

Young MR, Newby M, Wepsic HT. Hematopoiesis and suppres-sor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res 1987; 47(1): 100–5.

Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3): 162–74.

Nagaraj S, Collazo M, Corzo CA, Youn JI, Ortiz M, Quiceno D, et al. Regulatory myeloid suppressor cells in health and disease. Cancer Res 2009; 69(19): 7503–6.

Cuenca AG, Delano MJ, Kelly-Scumpia KM, Moreno C, Scumpia PO, Laface DM, et al. A paradoxical role for myeloid-derived sup¬pressor cells in sepsis and trauma. Mol Med 2011; 17(3-4): 281–92.

Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scum¬pia KM,et al. MyD88-dependent expansion of an imma-ture GR-1(+)CD11b(+) population induces T cell suppres-sion and Th2 polarization in sepsis. J Exp Med 2007; 204(6): 1463–74.

Delano MJ, Thayer T, Gabrilovich S, Kelly-Scumpia KM, Winfield RD, Scumpia PO,et al. Sepsis induces early alterations in innate immunity that impact mortality to secondary infection. J Im-munol 2011; 186(1): 195–202.

Shankar-Hari M, Deutschman CS, Singer M. Do we need a new definition of sepsis? Intensive Care Med 2015; 41(5): 909–11.

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, An-nane D, Bauer M, et al. The Third International Consensus Defini¬tions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315(8): 801–10.

Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A, McKinley BA, et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg 2012; 72(6): 1491–501.

Surbatovic M, Veljovic M, Jevdjic J, Popovic N, Djordjevic D, Rada-kovic S. Immunoinflammatory response in critically ill pa¬tients: severe sepsis and/or trauma. Mediators Inflamm 2013; 2013: 362793.

Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immuno-sup¬pression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol 2013; 13(12): 862–74.

Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sep-sis: a novel understanding of the disorder and a new therapeu-tic approach. Lancet Infect Dis 2013; 13(3): 260–8.

Ray A, Chakraborty K, Ray P. Immunosuppressive MDSCs in-duced by TLR signaling during infection and role in resolution of inflammation. Front Cell Infect Microbiol 2013; 3: 52.

Hotchkiss RS, Moldawer LL. Parallels between cancer and in-fec¬tious disease. N Engl J Med 2014; 371(4): 380–3.

Lai D, Qin C, Shu Q. Myeloid-derived suppressor cells in sep-sis. Biomed Res Int 2014; 2014: 598654.

Derive M, Bouazza Y, Alauzet C, Gibot S. Myeloid-derived sup-pressor cells control microbial sepsis. Intensive Care Med 2012; 38(6): 1040–9.

Brudecki L, Ferguson DA, McCall CE, El Gazzar M. Myeloid-de¬rived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response. Infect Im-mun 2012; 80(6): 2026–34.

Moreno R, Vincent JL, Matos R, Mendonça A, Cantraine F, Thijs L, et al. The use of maximum SOFA score to quantify organ dys¬function/failure in intensive care. Results of a prospective, multicentre study. Working Group on Sepsis related Problems of the ESICM. Intensive Care Med 1999; 25(7): 686–96.

Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physi¬ology Score (SAPS II) based on a European/North American multicenter study. JAMA 1993; 270(24): 2957–63.

Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med 1985; 13(10): 818–29.

Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Fer-rer R, et al. Surviving Sepsis Campaign: International Guide-lines for Management of Sepsis and Septic Shock: 2016. In-tensive Care Med 2017; 43(3): 304–77.

Sander LE, Sackett SD, Dierssen U, Beraza N, Linke RP, Müller M, et al. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived sup-pressor cell function. J Exp Med 2010; 207(7): 1453–64.

Stanojevic I, Miller K, Kandolf-Sekulovic L, Mijuskovic Z, Zolotarev-ski L, Jovic M, et al. A subpopulation that may correspond to granulocytic myeloid-derived suppressor cells reflects the clini-cal stage and progression of cutaneous melanoma. Int Immu-nol 2016; 28(2): 87–97.

Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, et al. Phe¬notypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep 2015; 10(4): 562–74.

Jordan KR, Amaria RN, Ramirez O, Callihan EB, Gao D, Bora-kove M, et al. Myeloid-derived suppressor cells are associated with disease progression and decreased overall survival in ad-vanced-stage melanoma patients. Cancer Immunol Immuno-ther 2013; 62(11): 1711–22.

Schmielau J, Finn OJ. Activated granulocytes and granulocyte-de¬rived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res 2001; 61(12): 4756–60.

Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Si¬erra R, et al. Arginase I-producing myeloid-derived suppres-sor cells in renal cell carcinoma are a subpopulation of activat-ed granulocytes. Cancer Res 2009; 69(4): 1553–60.

Darcy CJ, Minigo G, Piera KA, Davis JS, McNeil YR, Chen Y, et al. Neutrophils with myeloid derived suppressor function de-plete arginine and constrain T cell function in septic shock pa-tients. Crit Care 2014; 18(4): R163.

Surbatovic M, Radakovic S. Tumor necrosis factor-α levels early in severe acute pancreatitis: is there predictive value regarding severity and outcome? J Clin Gastroenterol 2013; 47(7): 637–43.

Djordjevic D, Pejovic J, Surbatovic M, Jevdjic J, Radakovic S, Veljovic M, et al. Prognostic value and daily trend of interleukin-6, neutrophil CD64 expression, C-reactive protein and lipopoly-saccharide-binding protein in critically ill patients: reliable pre-dictors of outcome or not? J Med Biochem 2015; 34(4): 431–9.

Youn JI, Gabrilovich DI. The biology of myeloid-derived sup-pres¬sor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 2010; 40(11): 2969–75.

Rodrigues JC, Gonzalez GC, Zhang L, Ibrahim G, Kelly JJ, Gus-tafson MP, et al. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro Oncol. 2010;12(4):351–65.

Mathias B, Delmas AL, Ozrazgat-Baslanti T, Vanzant EL, Szpila BE, Mohr AM, et al. Human myeloid-derived suppressor cells are associated with chronic immune suppression after severe sepsis/septic shock. Ann Surg 2017; 265(4): 827–34.

Uhel F, Azzaoui I, Grégoire M, Pangault C, Dulong J, Tadié JM, et al. Early expansion of circulating granulocytic myeloid-derived suppressor cells predicts development of nosocomial infec-tions in patients with sepsis. Am J Respir Crit Care Med 2017; 196(3): 315–27.

Cuenca AG, Moldawer LL. Myeloid-derived suppressor cells in sepsis: friend or foe? Intensive Care Med 2012; 38(6): 928–30.

Zhu X, Pribis JP, Rodriguez PC, Morris SM Jr, Vodovotz Y, Billiar TR, et al. The central role of arginine catabolism in T-cell dys-function and increased susceptibility to infection after physical injury. Ann Surg 2014; 259(1): 171–8.

Goenka A, Kollmann TR. Development of immunity in early life. J Infect 2015; 71 Suppl 1: S112–20.

Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol 2018; 19(2): 108–19.

Objavljeno
2021/04/08
Rubrika
Originalni članak