Ekspresija gena za hemokine CX3CL1 i CXCL16 i njihove receptore, CX3CR1 i CXCR6, u mononuklearnim leukocitima periferne krvi bolesnika sa relapsno-remitentnom multiplom sklerozom – pilot studija
Sažetak
Uvod/Cilj. Studije in vitro i in vivo pokazuju da hemokini CX3CL1 i CXCL16 i njihovi specifični receptori, CX3CR1 i CXCR6, posreduju u mehanizmu neuroinflamacije tokom patogeneze multiple skleroze (MS). Cilj studije bio je ispitivanje relativnih nivoa informacione ribonukleinske kiseline (iRNK) za CX3CL1, CXCL16, CX3CR1 i CXCR6 u mononuklearnim leukocitima periferne krvi, kao potencijalnim molekularnim markerima relapsno-remitentne (RR) MS. Metode. Studijom su bila obuhvćena 43 bolesnika sa RR MS, koji nisu bili u srodstvu, od kojih je 20 bilo u klinički aktivnoj fazi bolesti (relaps), a 23 u klinički stabilnoj fazi bolesti (remisija), dok su 28 zdravih ispitanika, koji nisu bili u srodstvu, bili kontrola. Za izvođenje lančanih reakcija polimeraze u realnom vremenu korišćeni su genski ekspresioni eseji TaqMan®. Relativni nivo ekspresije svakog ciljnog gena (iRNK) u svakom uzorku mononuklearnih leukocita periferne krvi bio je računat kao srednja normalizovana ekspresija. Rezultati. Nivoi CX3CR1 iRNK bili su značajno viši kod bolesnika u fazi relapsa u poređenju sa kontrolama [“fold change” = 1,38, p (Mann-Whitney U test) = 0,009] i značajno niži kod bolesnika u fazi remisije u poređenju sa bolesnicima u relapsu [“fold change” = -1,43, p (t-test) = 0,03]. Bolesnici u remisiji su imali značajno više nivoe CXCL16 iRNK nego kontrole [“fold change” = 1,33, p (Mann-Whitney U test) = 0,006]. Trend povećanja nivoa ekspresije CXCR6 gena je bio nađen kod bolesnika u relapsu u poređenju sa kontrolama [“fold change” = 1,23, p (Mann-Whitney U test) = 0,08]. Ni kod jednog bolesnika, ni u fazi relapsa ni u fazi remisije, nije bilo značajnih korelacija između vrednosti kliničkih parametara i nivooa ekspresije ciljnih gena. Zaključak. Rezultati pokazuju da povećanje nivoa CX3CR1 iRNK u mononuklearnim leukocitima periferne krvi može predstavljati proinflamatorni molekularni marker relapsa, tj. klinički aktivne faze relapsno-remitentne MS.
Reference
Le Thuc O, Blondeau N, Nahon JL, Rovère C. The complex con-tribution of chemokines to neuroinflammation: switching from beneficial to detrimental effects. Ann N Y Acad Sci 2015; 1351: 127−40.
Réaux-Le Goazigo A, Van Steenwinckel J, Rostène W, Mélik Par-sadaniantz S. Current status of chemokines in the adult CNS. Prog Neurobiol 2013; 104: 67−92.
Chen T, Guo ZP, Jiao XY, Jia RZ, Zhang YH, Li JY, et al. Pe-oniflorin suppresses tumor necrosis factor-α induced chemo-kine production in human dermal microvascular endothelial cells by blocking nuclear factor-κB and ERK pathway. Arch Dermatol Res 2011; 303(5): 351−60.
Shimaoka T, Kume N, Minami M, Hayashida K, Kataoka H, Kita T, et al. Molecular cloning of a novel scavenger receptor for oxidized low density lipoprotein, SR−PSOX, on macrophages. J Biol Chem 2000; 275(52): 40663−6.
Wilbanks A, Zondlo SC, Murphy K, Mak S, Soler D, Langdon P, et al. Expression cloning of the STRL33/BONZO/TYMSTR ligand reveals elements of CC, CXC, and CX3C chemokines. J Immunol 2001; 166: 5145−54.
Shashkin P, Simpson D, Mishin V, Chesnutt B, Ley K. Expression of CXCL16 in human T cells. Arterioscler Thromb Vasc Biol 2003; 23(1): 148−9.
Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, et al. Identification and molecular characterization of frac-talkine receptor CX3CR1, which mediates both leukocyte mi-gration and adhesion. Cell 1997; 91(4): 521−30.
Wehr A, Baeck C, Heymann F, Niemietz PM, Hammerich L, Mar-tin C, et al. Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fi-brosis. J Immunol 2013; 190(10): 5226−36.
Rennert K, Heisig K, Groeger M, Wallert M, Funke H, Lorkowski S, et al. Recruitment of CD16(+) monocytes to endothelial cells in response to LPS-treatment and concomitant TNF re-lease is regulated by CX3CR1 and interfered by soluble frac-talkine. Cytokine 2016; 83: 41−52.
Wang JH, Su F, Wang S, Lu XC, Zhang SH, Chen D, et al. CXCR6 deficiency attenuates pressure overload-induced monocytes migration and cardiac fibrosis through downregu-lating TNF-α-dependent MMP9 pathway. Int J Clin Exp Pathol 2014; 7(10): 6514−23.
Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, et al. A new class of membrane−bound chemokine with a CX3C motif. Nature 1997; 385(6617): 640‒4.
Ludwig A, Weber C. Transmembrane chemokines: versatile ‘special agents’ in vascular inflammation. Thromb Hae-most 2007; 97(5): 694−703.
Sunnemark D, Eltayeb S, Nilsson M, Wallstrom E, Lassmann H, Olsson T, et al. CX3CL1 (fractalkine) and CX3CR1 expression in myelin oligodendrocyte glycoprotein−induced experimental autoimmune encephalomyelitis: kinetics and cellular origin. J Neuroinflammation 2005; 2: 17.
Blauth K, Zhang X, Chopra M, Rogan S, Markovic-Plese S. The role of fractalkine (CX3CL1) in regulation of CD4(+) cell migration to the central nervous system in patients with re-lapsing−remitting multiple sclerosis. Clin Immunol 2015; 157(2): 121−32.
Kastenbauer S, Koedel U, Wick M, Kieseier BC, Hartung HP, Pfist-er HW. CSF and serum levels of soluble fractalkine (CX3CL1) in inflammatory diseases of the nervous system. J Neuroimmunol 2003; 137(1‒2): 210−7.
Huang D, Shi FD, Jung S, Pien GC, Wang J, Salazar-Mather TP, et al. The neuronal chemokine CX3CL1/fractalkine selective-ly recruits NK cells that modify experimental autoimmune en-cephalomyelitis within the central nervous system. FASEB J 2006; 20(7): 896−905.
Broux B, Pannemans K, Zhang X, Markovic−Plese S, Broekmans T, Eijnde BO, et al. CX(3)CR1 drives cytotoxic CD4(+)CD28(−) T cells into the brain of multiple sclerosis patients. J Autoimmun 2012; 38(1): 10−9.
Ludwig A, Schulte A, Schnack C, Hundhausen C, Reiss K, Brodway N, et al. Enhanced expression and shedding of the transmem-brane chemokine CXCL16 by reactive astrocytes and glioma cells. J Neurochem 2005; 93(5): 1293−303.
Wojkowska DW, Szpakowski P, Ksiazek-Winiarek D, Leszczynski M, Glabinski A. Interactions between neutrophils, Th17 cells, and chemokines during the initiation of experimental model of multiple sclerosis. Mediators Inflamm 2014; 2014: 590409.
Fukumoto N, Shimaoka T, Fujimura H, Sakoda S, Tanaka M, Kita T, et al. Critical roles of CXC chemokine ligand 16/scavenger receptor that binds phosphatidylserine and oxidized lipopro-tein in the pathogenesis of both acute and adoptive transfer experimental autoimmune encephalomyelitis. J Immu-nol 2004; 173(3): 1620−7.
Le Blanc LM, van Lieshout AW, Adema GJ, van Riel PL, Verbeek MM, Radstake TR. CXCL16 is elevated in the cerebrospinal fluid versus serum and in inflammatory condi-tions with suspected and proved central nervous system in-volvement. Neurosci Lett 2006; 397(1‒2): 145−8.
Stojković L, Stanković A, Djurić T, Dinčić E, Alavantić D, Zivković M. The gender-specific association of CXCL16 A181V gene polymorphism with susceptibility to multiple sclerosis, and its effects on PBMC mRNA and plasma soluble CXCL16 levels: preliminary findings. J Neurol 2014; 261(8): 1544−51.
Stojković L, Djurić T, Stanković A, Dinčić E, Stančić O, Veljković N, et al. The association of V249I and T280M fractalkine re-ceptor haplotypes with disease course of multiple sclerosis. J Neuroimmunol 2012; 245(1-2): 87−92.
Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revi-sions to the McDonald criteria. Ann Neurol 2011; 69(2): 292−302.
Lublin FD, Reingold SC. Defining the clinical course of multi-ple sclerosis: results of an international survey. National Mul-tiple Sclerosis Society (USA) Advisory Committee on clinical trials of New Agents in Multiple Sclerosis. Neurol 1996; 46(4): 907−11.
Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurol 1983; 33(11): 1444−52.
Roxburgh RH, Seaman SR, Masterman T, Hensiek AE, Sawcer SJ, Vukusic S, et al. Multiple Sclerosis Severity Score: using disa-bility and disease duration to rate disease severity. Neurol 2005; 64(7): 1144−51.
Andersen CL, Jensen JL, Ørntoft TF. Normalization of re-al−time quantitative reverse transcription−PCR data: a mod-el−based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 2004; 64(15): 5245−50.
Zimmermann AK, Simon P, Seeburger J, Hoffmann J, Ziemer G, Aebert H, et al. Cytokine gene expression in monocytes of pa-tients undergoing cardiopulmonary bypass surgery evaluated by real−time PCR. J Cell Mol Med 2003; 7(2): 146−56.
Pfaffl MW, Horgan GW, Dempfle L. Relative expression soft-ware tool (REST) for group−wise comparison and statistical analysis of relative expression results in real−time PCR. Nucl Ac Res 2002; 30(9): e36.
Blaschke S, Koziolek M, Schwarz A, Benöhr P, Middel P, Schwarz G, et al. Proinflammatory role of fractalkine (CX3CL1) in rheumatoid arthritis. J Rheumatol 2003; 30(9): 1918−27.
Hurst LA, Bunning RA, Couraud PO, Romero IA, Weksler BB, Sharrack B, et al. Expression of ADAM−17, TIMP−3 and fractalkine in the human adult brain endothelial cell line, hCMEC/D3, following pro−inflammatory cytokine treat-ment. J Neuroimmunol 2009; 210(1‒2): 108−12.
Infante-Duarte C, Weber A, Kratzschmar J, Prozorovski T, Pikol S, Hamann I, et al. Frequency of blood CX3CR1−positive natu-ral killer cells correlates with disease activity in multiple scle-rosis patients. FASEB J 2005; 19(13): 1902−4.
Hendrickx DA, Koning N, Schuurman KG, van Strien ME, van Eden CG, Hamann J, et al. Selective upregulation of scavenger receptors in and around demyelinating areas in multiple sclero-sis. J Neuropathol Exp Neurol 2013; 72(2): 106−18.
Calabresi PA, Yun SH, Allie R, Whartenby KA. Chemokine re-ceptor expression on MBP-reactive T cells: CXCR6 is a mark-er of IFNgamma-producing effector cells. J Neuroimmunol 2002; 127(1‒2): 96−105.
Haji Abdolvahab M, Mofrad MR, Schellekens H. Interferon beta: from molecular level to therapeutic effects. Int Rev Cell Mol Biol 2016; 326: 343−72.
Derbigny WA, Shobe LR, Kamran JC, Toomey KS, Ofner S. Iden-tifying a role for Toll−like receptor 3 in the innate immune re-sponse to Chlamydia muridarum infection in murine oviduct epithelial cells. Infect Immun 2012; 80: 254−65.
Tamtaji OR, Kouchaki E, Salami M, Aghadavod E, Akbari E, Tajabadi-Ebrahimi M, et al. The effects of probiotic supple-mentation on gene expression related to inflammation, insulin, and lipids in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. J Am Coll Nutr 2017; 36(8): 660−5.
Mindur JE, Valenzuela RM, Yadav SK, Boppana S, Dhib-Jalbut S, Ito K. IL-27: a potential biomarker for responders to glati-ramer acetate therapy. J Neuroimmunol 2017; 304: 21−8.
Ciriello J, Tatomir A, Hewes D, Boodhoo D, Anselmo F, Rus V, et al. Phosphorylated SIRT1 as a biomarker of relapse and re-sponse to treatment with glatiramer acetate in multiple sclero-sis. Exp Mol Pathol 2018; 105(2): 175−80.