Da li vrsta bakterija i poreklo sekundarne sepse kod kritično obolelih određuju tip supresorskih ćelija mijeloidnog porekla?

  • Ivo Udovičić Military Medical Academy , Clinic of Anesthesiology and Intensive Therapy Belgrade, Serbia
  • Maja Šurbatović Military Medical Academy, Clinic of Anesthesiology and Intensive Therapy, Belgrade, Serbia
  • Goran Rondović Military Medical Academy, Clinic of Anesthesiology and Intensive Therapy, Belgrade, Serbia
  • Ivan Stanojević University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
  • Snježana Zeba Military Medical Academy, Clinic of Anesthesiology and Intensive Therapy, Belgrade, Serbia
  • Dragan Djordjević Military Medical Academy, Clinic of Anesthesiology and Intensive Therapy, Belgrade, Serbia
  • Aneta Perić University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
  • Snežana Milosavljević Clinical Hospital Center Kosovska Mitrovica, Department of Anesthesiology, Kosovska Mitrovica, Serbia
  • Nikola Stanković Mother and Child Health Care Institute of Serbia, Department of Anesthesiology and Intensive Therapy, Belgrade, Serbia
  • Dzihan Abazović Emergency Medical Centar of Montenegro, Podgorica, Montenegro
  • Danilo Vojvodić University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
Ključne reči: gram-negativne bakerije, gram-pozitivne bakterije, kritična stanja, kostna srž, ćelije, supresorske, sepsa

Sažetak


Uvod/Cilj. Gram-pozitivne i Gram-negativne bakterije mogu indukovati različit imunoinflamatorni odgovor. Cilj istraživanja bio je da se utvrdi da li kod kritično obolelih bolesnika sa sekundarnom sepsom postoji povezanost učes­talosti i/ili apsolutnih brojeva supresorskih ćelija mijeloidnog porekla (MDSC) sa vrstom bakterijskog prouzrokovača i poreklom sekundarne sepse. Metode. Prospektivnom studijom bilo je obuhvaćeno ukupno 40 kritično obolelih bolesnika sa sekundarnom sepsom. Dva bolesnika bez dokazanog prisustva bakterija u sistemskoj cirkulaciji bila su isključena iz daljih analiza. Detektovane su i kvantifikovane obe glavne podvrste MDSC: granulocitne (G)-MDSC i monocitne (M)-MDSC) 1. i 5. dana. Istovremeno je uzimana i krv za određivanje hemokultura. Rezultati. Utvrdili smo da su obe glavne podvrste koje odgovaraju MDSCs bile značajno akumulirane u Gram-pozitivnoj sepsi. Univarijantna logistička regresiona analiza ispitivanih varijabli pokazala je da su 5. dana apsolutni broj G-MDSC, kao i učestalost i apsolutni broj M-MDSC bili značajni prediktori Gram-pozitivne sepse. Multivarijantna logistička regresiona analiza pokazala je da je 5. dana apsolutni broj M-MDSC bio nezavisni prediktor Gram-pozitivne sepse [odds ratio (OR) 1,012; p < 0,05]. Odnosi neutrofili (N)/G-MDSC i monociti (M)/M-MDSC bili su značajni prediktori Gram-pozitivne sepse u oba termina [area under curve (AUC) 0,684 i 0,692, odnosno 0,707 i 0,793]. Takođe, N/G-MDSC odnos je u oba termina bio značajan prediktor smrtnog ishoda (AUC 0,694, odnosno 0,678). Posmatrajući bolesnike sa različitim poreklom sekundarne sepse (peritonitis, pankreatitis, trauma) kao zasebne grupe, i poređenjem učestalosti i apsolutnog broja G-MDSC i M-MDSC, nisu utvrđene statistički značajne razlike ni prvog ni petog dana. Zaključak. Gram-pozitivne bakterije su snažni induktori akumulacije MDSC u sepsi. Takođe, izgleda da poreklo sepse ne utiče na akumulaciju MDSC.

Reference

Surbatovic M, Popovic N, Vojvodic D, Milosevic I, Acimovic G, Stojcic M, et al. Cytokine profile in severe Gram-positive and Gram-negative abdominal sepsis. Sci Rep 2015; 5: 11355.

Carlet J, Cohen J, Calandra T, Opal SM, Masur H. Sepsis: time to reconsider the concept. Crit Care Med 2008; 36(3): 964‒6.

Djordjevic D, Rondovic G, Surbatovic M, Stanojevic I, Udovicic I, Andjelic T, et al. Neutrophil-to-Lymphocyte Ratio, Monocyte-to-Lymphocyte Ratio, Platelet-to-Lymphocyte Ratio, and Mean Platelet Volume-to-Platelet Count Ratio as Biomarkers in Critically Ill and Injured Patients: Which Ratio to Choose to Predict Outcome and Nature of Bacteremia? Mediators In-flamm 2018; 2018: 3758068.

Cuenca AG, Delano MJ, Kelly-Scumpia KM, Moreno C, Scumpia PO, Laface DM, et al. A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Mol Med 2011; 17(3‒4): 281‒92.

Udovicic I, Surbatovic M, Rondovic G, Stanojevic I, Zeba S, Djordjevic D, et al. Myeloid-derived suppressor cells in sec-ondary sepsis: is there association with lethal outcome? Vojno-sanit Pregl 2018; DOI: https://doi.org/10.2298/VSP180706133U.

Moreno R, Vincent JL, Matos R, Mendonça A, Cantraine F, Thijs L, et al. The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Working Group on Sepsis related Problems of the ESICM. Intensive Care Med 1999; 25(7): 686‒96.

Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 1993; 270(24): 2957‒63.

Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med 1985; 13(10): 818‒29.

Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Fer-rer R, et al. Surviving Sepsis Campaign: International Guide-lines for Management of Sepsis and Septic Shock: 2016. Crit Care Med 2017; 45(3): 486‒552.

Surbatovic M, Veljovic M, Jevdjic J, Popovic N, Djordjevic D, Rada-kovic S. Immunoinflammatory response in critically ill patients: severe sepsis and/or trauma. Mediators Inflamm 2013; 2013: 362793.

Surbatovic M, Vojvodic D, Khan W. Immune Response in Criti-cally Ill Patients. Mediators Inflamm 2018; 2018: 9524315.

Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3): 162‒74.

Ribechini E, Greifenberg V, Sandwick S, Lutz MB. Subsets, ex-pansion and activation of myeloid-derived suppressor cells. Med Microbiol Immunol 2010; 199(3): 273‒81.

Ost M, Singh A, Peschel A, Mehling R, Rieber N, Hartl D. Mye-loid-Derived Suppressor Cells in Bacterial Infections. Front Cell Infect Microbiol 2016; 6: 37.

Minejima E, Bensman J, She RC, Mack WJ, Tuan Tran M, Ny P, et al. A Dysregulated Balance of Proinflammatory and Anti-Inflammatory Host Cytokine Response Early During Therapy Predicts Persistence and Mortality in Staphylococcus aureus Bacteremia. Crit Care Med 2016; 44(4): 671‒9.

Janols H, Bergenfelz C, Allaoui R, Larsson AM, Rydén L, Björns-son S, et al. A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in gram-positive cases. J Leukoc Biol 2014; 96(5): 685‒93.

Hotchkiss RS, Moldawer LL. Parallels between cancer and in-fectious disease. N Engl J Med 2014; 371(4): 380‒3.

Gabrilovich DI. Editorial: The intricacy of choice: can bacteria decide what type of myeloid cells to stimulate? J Leukoc Biol 2014; 96(5): 671‒4.

Uhel F, Azzaoui I, Grégoire M, Pangault C, Dulong J, Tadié JM, et al. Early Expansion of Circulating Granulocytic Myeloid-derived Suppressor Cells Predicts Development of Nosocomi-al Infections in Patients with Sepsis. Am J Respir Crit Care Med 2017; 196(3): 315‒27.

Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mecha-nisms, molecules and clinical significance. Trends Immunol 2009; 30(10): 475‒87.

Bergenfelz C, Larsson AM, von Stedingk K, Gruvberger-Saal S, Aaltonen K, Jansson S, et al. Systemic Monocytic-MDSCs Are Generated from Monocytes and Correlate with Disease Pro-gression in Breast Cancer Patients. PLoS One 2015; 10(5): e0127028.

Pena OM, Pistolic J, Raj D, Fjell CD, Hancock RE. Endotoxin tolerance represents a distinctive state of alternative polariza-tion (M2) in human mononuclear cells. J Immunol 2011; 186(12): 7243‒54.

Porta C, Rimoldi M, Raes G, Brys L, Ghezzi P, Di Liberto D, et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kap-paB. Proc Natl Acad Sci U S A 2009; 106(35): 14978‒83.

Xu PB, Lou JS, Ren Y, Miao CH, Deng XM. Gene expression profiling reveals the defining features of monocytes from sep-tic patients with compensatory anti-inflammatory response syndrome. J Infect 2012; 65(5): 380‒91.

Mages J, Dietrich H, Lang R. A genome-wide analysis of LPS tolerance in macrophages. Immunobiology 2007; 212(9‒10): 723‒37.

Zhao L, Shao Q, Zhang Y, Zhang L, He Y, Wang L, et al. Hu-man monocytes undergo functional re-programming during differentiation to dendritic cell mediated by human extravil-lous trophoblasts. Sci Rep 2016; 6: 20409.

Shalova IN, Lim JY, Chittezhath M, Zinkernagel AS, Beasley F, Hernández-Jiménez E, et al. Human monocytes undergo func-tional re-programming during sepsis mediated by hypoxia-inducible factor-1α. Immunity 2015; 42(3): 484‒98.

Objavljeno
2021/03/04
Rubrika
Originalni članak