Antitumorska aktivnost i mehanizam delovanja polifenolima bogatih ekstrakata i soka korena rena in vitro

  • Vidosava Petrović University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
  • Dragana Četojević-Simin Oncology Institute of Vojvodina, Sremska Kamenica, Serbia
  • Maja Milanović University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
  • Jelena Vulić University of Novi Sad, Faculty of Technology, Novi Sad, Serbi
  • Nataša Milić University of Novi Sad, Faculty of Medicine, Department of Pharmacy, Novi Sad, Serbia
Ključne reči: ren, fenoli, antineoplastici, in vitro, ćelija, smrt, apoptoza

Sažetak


Uvod/Cilj. Poznato je da polifenoli biljaka poseduju antimutagenu, antikancerogenu, antivirusnu i antioksidativnu aktivnost. Cilj ovog rada bio je ispitivanje bioaktivnog potencijala soka i ekstrakata korena Armoracia rusticana: određivanje polifenolnog sastava, in vitro antitumorske aktivnosti i mehanizma ćelijske smrti Metode. Primenom tečno-tečne ekstrakcije izolovane su i razdvojene polarne od nepolarnih komponenti, a HPLC metodom identifikovana su i kvantifikovana polifenolna jedinjenja. Antiproliferativna aktivnost ekstrakata i soka korena rena ispitana je in vitro na tumorskim ćelijskim linijama: karcinoma grlića materice (HeLa), adenokarcinoma dojke (MCF7 i MDA-MB-231), adenokarcinoma debelog creva (HT-29), adenokarcinoma pluća (A549), adenokarcinoma prostate (PC-3), karcinoma kože (Hs 294T), karcinoma jetre (Hep G2), kao i na ćelijskim linijama karcinoma jetre pacova (H-4-II-E) i normalnim fetalnim ćelijskim linijama pluća (MRC-5) upotrebom sulforodamin B testa. Mehanizam ćelijske smrti određen je detekcijom apoptoze i nekroze upotrebom Cell Death Detection ELISAPLUS kompleta. Rezultati. Dihlormetanski ekstrakti korena rena imali su najveći sadržaj katehina, p-hidroksibenzoeve, siringinske i galne kiseline (pulpa, E1), i epikatehina (sok, E3). Utvrđena je snažna i neselektivna antiproliferativna aktivnost hloroformskih i dihlormetanskih ekstrakata i soka korena rena, sa najsnažnijim delovanjem na ćelijske linije jetre, dojke i pluća. Dobijene IC50 vrednosti bile su u niskom rasponu koncentracija  (IC50 = 3,49–26,5 µg/mL) i u visokim razblaženjima (IC50 = 418–1590). Sok i hloroformski ekstrakt soka rena (E4) pokazali su snažnu, nepoželjnu sposobnost indukcije nekroze. Zaključak. Hloroformski i dihlormetanski ekstrakti, kao i sok korena rena ispoljili su su snažnu i neselektivnu antiproliferativnu aktivnost in vitro, sa nekrozom kao dominantnim mehanizmom ćelijske smrti. U cilju iskorišćenja bioaktivnog potencijala korena rena, neophodna su dalja ispitivanja i izolacija aktivnih komponenti sa povoljnijim odnosom indukcije apoptoze i nekroze.

Reference

Weber WW. Seed production in horseradish. J Hered 1949; 40(8): 223‒7.

Balasinska B, Nicolle C, Gueux E, Majewska A, Demigne C, Ma-zur A. Dietary horseradish reduces plasma cholesterol in mice. Nutr Res 2005; 25(10): 937‒45.

Shehata A, Mulwa RMS, Babadoost M, Uchanski M, Norton MA, Skirvin R, et al. Horseradish: botany, horticulture and breed-ing. In: Janick J, editor. Horticultural reviews. Hoboken: Wiley-Blackwell; 2009. p. 222‒61.

Walters SA, Wahle EA. Horseradish production in Illinois. Hortic Technol 2010; 20(2): 267‒76.

Dinkova-Kostova AT, Kostov RV. Glucosinolates and isothiocya-nates in health and disease. Trends Mol Med. 2012; 18(6): 337–47.

Fahey JW, Zalcmann AT, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001; 56(1): 5‒51.

Sultana T, Savage GP, McNeil DL, Porter NG, Martin RJ, Deo B. Effects of fertilisation on the allyl isothiocyanate profile of above-ground tissue of New Zeland-grown wasabi. J Sci Food Agr 2002; 82(13): 1477‒82.

Agneta R, Rivelli AR, Ventrella E, Lelario F, Sarli G, Bufo SA. Investigation of glucosinolate profile and qualitative aspects in sprouts and roots of horseradish (Armoracia rusticana) using LC-ESI-hybrid linear ion trap with Fourier transform ion cy-clotron resonance mass spectrometry and infrared multipho-ton dissociation. J Agric Food Chem 2012; 60(30): 7474‒82.

Okuda T, Yoshida T, Htano T. Economical and medicinal plant research. In: Wagner H, Hikino H, Farnsworth N, editors. Eco-nomical and medicinal plant research. New York: Academic press; 1991. p. 129.

Ho CT, Osawa T, Huang MT, Rosen RT. Food phytochemicals for cancer prevention. Washington, DC: American Chemical Society; 1994.

Gao X, Bjork L, Trajkovski V, Uggla M. Evaluation of antioxi-dant activities of rosehip ethanol extracts in different test sys-tems. J Sci Food Agr 2000; 80(14): 2021‒7.

Owen RW, Giacosa A, Hull WE, Haubner R, Spiegelhalder B, Bartsch H. The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur J Cancer 2000; 36(10): 1235‒47.

Yang CS, Landau JM, Huang MT, Newmark HL. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr 2001; 21(1): 381‒406.

Tapiero H, Tew KD, Ba GN, Mathé G. Polyphenols: do they play a role in the prevention of human pathologies? Biomed Pharmacother 2002; 56(4): 200‒7.

Cartea ME, Francisco M, Soengas P. Velasco P. Phenolic com-pounds in Brassica vegetables. Molecules 2011; 16(1): 251‒80.

Podsedek A. Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT – Food Sci Technol 2007; 40(1): 1‒11.

Vallejo F, Tomas-Barberan FA, Garcia-Viguera C. Potential bio-active compounds in health promotion from broccoli cultivars grown in Spain. J Sci Food Agr 2002; 82(11): 1293‒7.

Martínez-Sánchez A, Gil-Izquierdo A, Gil MI, Ferreres F. A comparative study of flavonoid compounds, vitamin C, and antioxidant properties of baby leaf Brassicaceae species. J Agric Food Chem 2008; 56(7): 2330‒40.

Nićiforović N, Abramovič H. Sinapic acid and its derivatives: natural sources and bioactivity. Compr Rev Food Sci Food Saf 2014; 13(1): 34‒51.

Fursa NS, Litvinenko VI, Krivenchuk PE. Flavonoids of Armo-racia rusticana and Barbarea arcuata. Chem Nat Compd 1969; 5(4): 270‒1.

Cirimbei MR, Dinica R, Gitin L, Vizireanu C. Study on herbal actions of horseradish (Armoracia rusticana). J Agroaliment Proc Technol 2013; 19(1): 111‒5.

Kupchan SM. Recent advances in the chemistry of terpenoid tumor inhibitors. In: Kupcan SM, editor. Tumor inhibitors. Virginia: University of Virginia; 1969. p. 227–46.

Sarker SD, Latif Z, Gray AI. Natural products isolation. New Jersey: Humana Press Inc; 2006.

Četojević-Simin DD, Velićanski AS, Cvetković DD, Markov SL, Mrđanović JŽ, Bogdanović VV, et al. Bioactivity of lemon balm Kombucha. Food Bioprocess Tech 2012; 5(5): 1756‒65.

Četojević-Simin DD, Velićanski AS, Cvetković DD, Markov SL, Cetković GS, Tumbas Šaponjac VT, et al. Bioactivity of Meeker and Willamette raspberry (Rubus idaeus L.) pomace extracts. Food Chem 2015; 166: 407‒13.

Aissani N, Tedeschi P, Maietti A, Brandolini V, Garau VL, Ca-boni P. Nematicidal activity of allyl isothiocyanate from horse-radish (Armoracia rusticana) roots against Meloidogyne incig-nita. J Agric Food Chem 2013; 61(20): 4723‒7.

Herz C, Tran HTT, Márton MR, Maul R, Baldermann S, Schrein-er M, et al. Evaluation of an aqueous extract from horseradish root (Armoracia rusticana Radix) against lipopolysaccharide-induced cellular inflammation reaction. Evid Based Comple-ment Alternat Med 2017; 2017: 1950692.

Marzocco S, Calabrone L, Adesso S, Larocca M, Franceschelli S, Autore G, et al. Anti-inflamatory activity of horseradish (Ar-moracia rusticana) root extracts in LPS-stimulated macro-phages. Food Funct 2015; 6(12): 3778‒88.

Calabrone L, Larocca M, Marzocco S, Martelli G, Rossano R. Total phenols and flavonoids content, antioxidant capacity and li-pase inhibition of root and leaf horseradish (Armoracia rusti-cana) extracts. Food Nutr Sci 2015; 6(1): 64‒74.

Tomsone L, Kruma Z. Comparison of different solvents for iso-lation of phenolic compounds from horseradish (Armoracia Rusticana L.) leaves. Res Rural Dev 2013; (19): 104‒10.

Singleton VL, Orthofer R, Lamuela-Raventos RM. Methods in en-zymology, oxidant and antioxidants (Part A). In: Packer L, editor. Analysis of total phenols and other oxidation sub-strates and antioxidants by means of Folin-Ciocalteu reagent. San Diego: Academic Press; 1999. p. 152‒78.

Teel RW, Huynh H. Modulation by phytochemicals of cyto-chrome P450-linked enzyme activity. Cancer Lett 1998; 133(2): 135‒41.

Watabe M., Hishikawa K, Takayanagi A, Shimizu N, Nakaki T. Caffeic acid phenethyl ester induces apoptosis by inhibition of NF-kappa B and activation of Fas in human breast cancer MCF-7 cells. J Biol Chem 2004; 279(7): 6017‒26.

Myhrsta MC, Carlsen H, Nordström O, Blomhoff R, Moskaug JØ. Flavonoids increase the intracellular glutathione level by transactivation of the gamma-glutamylcysteine synthetase cat-alytical subunit promoter. Free Radic Biol Med 2002; 32(5): 386‒93.

Četojević-Simin D. Tumor cell growth activity of fruit and pom-ace extracts. In: Oven JP, editor. Fruit and pomace extracts: biological activity, potential applications and beneficial health effects. New York: Nova Science Publishers; 2015. p. 241‒53.

Simin N, Orcic D, Cetojevic-Simin D, Mimica-Dukic N, Anackov G, Beara I, et al. Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of small yellow onion (Allium flavum L. subsp. flavum, Alliaceae). LWT – Food Sci Technol 2013; 54(1): 139‒46.

Zhao B, Hu M. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. On-col Lett 2013; 6(6): 1749‒55.

Verma S, Singh A, Mishra A. Gallic acid: Molecular rival of cancer. Environ Toxicol Pharmacol 2013; 35(3): 473–85.

Guo D, Pan H, Li X, Guo D. Metabolic engineering of Esche-richia coli for production of biodiesel from fatty alcohols and acetyl-CoA. Appl Microbiol Biotechnol 2015; 99(18): 7805‒12.

Nguyen TT, Tran E, Ong CK. Kaempferol-induced growth inhi-bition and apoptosis in A549 lung cancer cells is mediated by activation of MEK-MAPK. J Cell Physiol 2003; 197(1): 110–21.

Hung H. Inhibition of estrogen receptor alpha expression and function in MCF7 cells by kaempferol. J Cell Physiol 2004; 198(2): 197‒208.

Li C, Yang X, Chen C, Cai S, Hu J. Isorhamnetin suppresses colon cancer cell growth through the PI3K-Akt-mTOR pat-way. Mol Med Rep 2014; 9(3): 935‒40.

Xu K, Thornalley PJ. Involvement of glutathione metabolism in the cytotoxicity of the phenethyl isothiocyanate and its cyste-ine conjugate to human leukaemia cells in vitro. Biochem Pharmacol 2001; 61(2): 165‒77.

Gong A, He M, Krishna Vanaja D, Yin P, Karnes RJ, Young CY. Phenethyl isothiocyanate inhibits STAT3 activation in pros-tate cancer cells. Mol Nutr Food Res 2009; 53(7): 878‒86.

Kang L, Ding L, Wang ZY. Isothiocyanates repress estrogen re-ceptor alpha expression in breast cancer cells. Oncol Rep 2009; 21(1): 185‒92.

Mi L, Gan N, Cheema A, Dakshanamurthy S, Wang X, Yang DC, et al. Cancer preventive isothiocyanates induce selective degradation of cellular alpha- and beta-tubulins by pro-teasomes. J Biol Chem 2009; 284(25): 17039‒51.

Mukherjee S, Dey S, Bhattacharya RK, Roy M. Isothiocyanates sensitize the effect of chemotherapeutic drugs via modulation of protein kinase C and telomerase in cervical cancer cells. Mol Cell Biochem 2009; 330(1‒2): 9‒22.

Prawan A, Saw CL, Khor TO, Keum YS, Yu S, Hu L, et al. Anti-NF-kappaB and anti-inflammatory activities of synthetic isothiocyanates: effect of chemical structures and cellular sig-naling. Chem Biol Interact 2009; 179(2‒3): 202‒11.

Zhang Y, Tang L, Gonyalez V. Selected isothiocyanates rapidly induce growth inhibition of cancer cells. Mol Cancer Ther 2003; 2(10): 1045‒52.

Xiao D, Srivastava SK, Lew KL, Zeng Y, Hershberger P, Johnson CS, et al. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits proliferation of human prostate cancer cells by causing G2/M arrest and inducing apoptosis. Carcino-genesis 2003; 24(5): 891‒7.

Musk SR, Johnson IT. Allyl isothiocyanate is selectively toxic to transformed cells of the human colorectal tumor line HT29. Carcinogenesis. 1993; 14(10): 2079‒83.

Tang L, Zhang Y. Dietary isothiocyanates inhibit the growth of human bladder carcinoma cells. J Nutr. 2004; 134(8): 2004‒10.

Konić-Ristić A, Stanojković T, Srdić-Rajić T, Dilber S, Đorđević B, Stanković I, et al. In vitro assessment of antiproliferative action selectivity of dietary isothiocyanates for tumor versus normal human cells. Vojnosanit Pregl 2016; 73(7): 636‒42.

Objavljeno
2021/08/06
Rubrika
Originalni članak