Novi kompleksi zlata pincer-tipa indukuju kaspaza-zavisnu apoptozu u humanim ćelijama raka in vitro
Sažetak
Uvod/Cilj. Upotreba cisplatine kao citostatika je otvorila vrata za istraživanje novih lekova koji u svojoj strukturi sadrže neki od metala. Novi kompleksi koji sadrže metale poput platine, paladijuma, rutenijuma i zlata se od nedavno ispituju kao potencijalni antitumorski lekovi. Cilj rada bio je da se ispita citotoksičnost Au(III) kompleksa sa ligandima tipa pincer protiv ćelija karcinoma grlića materice (HeLa), ćelija raka dojke (MDA-MB-231 i 4T1) i ćelija karcinoma kolona (HCT116 i CT26), kao i tip i mehanizam ćelijske smrti koji ti kompleksi indukuju u ćelijama raka. Metode. Citotoksičnost Au(III) kompleksa je ispitivana pomoću MTT testa. Apoptoza tretiranih ćelija raka je merena protočnom citometrijom i primenom bojenja Aneksin V/7AAD. Ekspresija aktivnog proapoptotičnog proteina Bax, antiapoptotskog proteina Bcl-2 i procenat ćelija koje sadrže aktivnu kaspazu-3 u tretiranim ćelijama raka određena je protočnom citometrijom. Rezultati. Kompleks 1 je pokazao najsnažniji antitumorski efekat na HeLa ćelije, kako u poređenju sa drugim ispitivanim kompleksima zlata, tako i u poređenju sa cisplatinom. Vrednosti IC50 kompleksa zlata na HeLa ćelije nakon 72 sata bile su 1,3 ± 0,4 μM, 3,4 ± 1,3 μM, 5,7 ± 0,6 μM, 26,7 ± 6,5 μM za komplekse 1, 2, 3 i cisplatin, redom. Kompleks 1 je takođe pokazao najvišu citotoksičnost prema MDA-MB-231 i HCT116 ćelijama u poređenju sa drugim testiranim jedinjenjima. Rezultati bojenja aneksinomV/7AAD pokazali su da sva tri kompleksa zlata indukuju apoptozu u tretiranim ćelijama. Naši kompleksi Au(III) indukovali su apoptozu mehanizmom koji je zavisio od kaspaze, ali nismo pokazali da je u tretiranim ćelijama raka došlo do aktivacije unutrašnjeg puta apoptoze. Zaključak. Prema rezultatima naše in vitro studije, sva tri jedinjenja zlata, a posebno kompleks 1, obećavajući su kandidati za novu generaciju antikancerogenih lekova.
Reference
Arem H, Loftfield E. Cancer epidemiology: A survey of modifi-able risk factors for prevention and survivorship. Am J Life-style Med 2018; 12(3): 200−10.
Pan P, Yu J, Wang LS. Colon cancer: what we eat. Surg Oncol Clin N Am 2018; 27(2): 243−67.
Hill DA, Friend S, Lomo L, Wiggins C, Barry M, Prossnitz E, et al. Breast cancer survival, survival disparities, and guideline-based treatment. Breast Cancer Res Treat 2018; 170(2): 405−14.
Al-Dimassi S, Abou-Antoun T, El-Sibai M. Cancer cell re-sistance mechanisms: a mini review. Clin Transl Oncol 2014; 16(6): 511−6.
Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D'Orazi G. Apopto-sis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 2016; 8(4): 603−19.
Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its signifi-cance in cancer and cancer therapy. Cancer 1994; 73(8): 2013−26.
Cheng X, Holenya P, Can S, Alborzinia H, Rubbiani R, Ott I, et al. A TrxR inhibiting gold (I) NHC complex induces apoptosis through ASK1-p38-MAPK signaling in pancreatic cancer cells. Mol Cancer 2014; 13: 221.
Kulsoom B, Shamsi TS, Afsar NA, Memon Z, Ahmed N, Hasnain SN. Bax, Bcl-2, and Bax/Bcl-2 as prognostic markers in acute myeloid leukemia: Are we ready for Bcl-2-directed therapy? Cancer Manag Res 2018; 10: 403−16.
Kolenko VM, Uzzo RG, Bukowski R, Finke JH. Caspase-dependent and -independent death pathways in cancer thera-py. Apoptosis 2000; 5(1): 17−20.
Ndagi U, Mhlongo N, Soliman ME. Metal complexes in cancer therapy – an update from drug design perspective. Drug Des Devel Ther 2017; 11: 599−616.
Zhang P, Sadler PJ. Advances in the design of organometallic anticancer complexes. J Organomet Chem 2017; 839: 5−14.
Lazarević T, Rilak A, Bugarčić ŽD. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clini-cal uses, cytotoxicity studies and future perspectives. Eur J Med Chem 2017; 142: 8−31.
Nardon C, Boscutti G, Fregona D. Beyond platinums: Gold com-plexes as anticancer agents. Anticancer Res 2014; 34(1): 487−92.
Bertrand B, Casini A. A golden future in medicinal inorganic chemistry: The promise of anticancer gold organometallic compounds. Dalton Trans 2014; 43(11): 4209−19.
Radisavljević S, Bratsos I, Scheurer A, Korzekwa J, Masnikosa R, Tot A, et al. New gold pincer-type complexes: synthesis, char-acterization, DNA binding studies and cytotoxicity. Dalt Trans 2018; 47(38): 13696−712.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65(1–2): 55−63.
Sundquist TE, Moravec R, Niles AN, O’Brien MA, Riss T. Tim-ing your apoptosis assays. Cell Notes 2006; 16: 18−21.
Zaric M, Mitrovic M, Nikolic I, Baskic D, Popovic S, Djurdjevic P, et al. Chrysin induces apoptosis in peripheral blood lympho-cytes isolated from human chronic lymphocytic leukemia. An-ticancer Agents Med Chem 2015; 15(2): 189−95.
Čanović P, Simović AR, Radisavljević S, Bratsos I, Demitri N, Mi-trović M, et al. Impact of aromaticity on anticancer activity of polypyridyl ruthenium(II) complexes: synthesis, structure, DNA/protein binding, lipophilicity and anticancer activity. J Biol Inorg Chem 2017; 22(7): 1007−28.
O’Donovan M. A critique of methods to measure cytotoxicity in mammalian cell genotoxicity assays. Mutagenesis 2012; 27(6): 615−21.
Joksimović N, Baskić D, Popović S, Zarić M, Kosanić M, Ranković B, et al. Synthesis, characterization, biological activity, DNA and BSA binding study: novel copper(II) complexes with 2-hydroxy-4-aryl-4-oxo-2-butenoate. Dalton Trans 2016; 45(38): 15067−77.
Li CK, Sun RW, Kui SC, Zhu N, Che CM. Anticancer cy-clometalated [AuIIIm (C∧ N∧ C) mL] n+ compounds: synthe-sis and cytotoxic properties. Chem Eur J 2006; 12(20): 5253−66.
Shi P, Jiang Q, Zhao Y, Zhang Y, Lin J, Lin L, et al. DNA bind-ing properties of novel cytotoxic gold (III) complexes of ter-pyridine ligands: the impact of steric and electrostatic effects. JBIC J Biol Inorg Chem 2006; 11(6): 745−52.
Marloye M, Berger G, Gelbcke M, Dufrasne F. A survey of the mechanisms of action of anticancer transition metal complex-es. Future Med Chem 2016; 8(18): 2263−86.
Williams MR, Bertrand B, Fernandez-Cestau J, Waller ZA, O'Connell MA, Searcey M, et al. Acridine-decorated cyclometal-lated gold(III) complexes: synthesis and anti-tumour investiga-tions. Dalt Trans 2018; 47(38): 13523−34.
Bertrand B, O’Connell MA, Waller ZA, Bochmann M. A Gold(III) Pincer Ligand Scaffold for the Synthesis of Binucle-ar and Bioconjugated Complexes: Synthesis and Anticancer Potential. Chemistry 2018; 24(14): 3613−22.
Che CM, Sun RW. Therapeutic applications of gold complex-es: lipophilic gold (III) cations and gold (I) complexes for anti-cancer treatment. Chem Commun (Camb) 2011; 47(34): 9554−60.
Yeo C, Ooi K, Tiekink E. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy? Molecules 2018; 23(6): pii: E1410.
Fung SK, Zou T, Cao B, Lee PY, Fung YM, Hu D, et al. Cy-clometalated Gold(III) Complexes Containing N-Heterocyclic Carbene Ligands Engage Multiple Anti-Cancer Molecular Tar-gets. Angew Chem Int Ed Engl 2017; 56(14): 3892−6.
Wolf BB, Schuler M, Echeverri F, Green DR. Caspase-3 Is the Primary Activator of Apoptotic DNA Fragmentation via DNA Fragmentation Factor-45/Inhibitor of Caspase-activated DNase Inactivation. J Biol Chem 1999; 274(43): 30651−6.
Tu S, Wai‐Yin Sun R, Lin MC, Tao Cui J, Zou B, Gu Q, et al. Gold (III) porphyrin complexes induce apoptosis and cell cy-cle arrest and inhibit tumor growth in colon cancer. Cancer 2009; 115(19): 4459−69.