Povezanost tipa preloma i formiranja kalusa sa koncentracijom proinflamatornih citokina kod dece sa prelomima dugih kostiju

  • Zoran Paunović Institute for Health Protection of Mother and Child of Serbia “Dr. Vukan Čupić“, Belgrade, Serbia
  • Sanja Milutinović University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
  • Nikola Stanković Institute for Health Protection of Mother and Child of Serbia “Dr. Vukan Čupić“, Belgrade, Serbia
  • Džihan Abazović Emergency Medical Center of Montenegro, Podgorica, Montenegro
  • Ivan Stanojević University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
  • Mia Rakić University of Nantes, Faculty of Dental Surgery, Nantes, France
  • Mirjana Djukić Faculty of Pharmacy, Belgrade, Serbia
  • Gordana Šupić University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
  • Danilo Vojvodić University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
  • Dušan Marić University of Novi Sad, Faculty of Medicine, Novi Sad, Serbia
  • Wasim S Khan University of Cambridge, Addenbrooke's Hospital, Division of Trauma and Orthopedic Surgery, Cambridge, United Kingdom
  • Srdjan Starčević University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
Ključne reči: fractures, bone, fracture healing, child, adolescent, bony callus, interleukin-1beta, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, interleukin-8, prognosis

Sažetak


Uvod/Cilj. Inflamatorni odgovor je od izuzetne važnosti u zarastanju koštanih preloma, iako je precizna uloga ćelija i citokina nejasna. U našoj studiji ispitivali smo povezanost vrednosti interleukina-1β (IL-1β), faktora nekroze tumora-alfa (TNF-α), monocitni hemoatraktantni protein-1 (MCP-1) i interleukina-8 (IL-8) sa konfiguracijom preloma i formiranjem kalusa. Metode. Serumska koncentracija citokina određivana je kod 78 negojazne dece sa prelomom dugih kostiju (grupa 1), 10 dece sa prelomom prstiju (grupa 2) i 10 zdrave dece (grupa 3 ‒ kontrolna grupa). Uzorci krvi kod dece sa prelomima kostiju uzimani su odmah po prijemu u bolnicu (grupe 1 i 2). Razlike u koncentracijama citokina su analizirane između grupa i kategorisane prema konfiguraciji preloma i formiranju kalusa. Rezultati. Vrednosti IL1-β i TNF-α bile su niže kod bolesnika sa nedovoljno formiranim kalusom u odnosu na one sa kompletnim kalusom. Iznenađujuće, prosečna IL1-β koncentracija bila je najveća u kontrolnoj grupi. Jedina značajna korelacija između IL1-β i TNF-α bila je u grupi sa intermedijarno formiranim kalusom. MCP-1 je imao povišene vrednosti kod svih bolesnika u odnosu na kontrolnu grupu, bez međusobnih razlika. Prosečna vrednost IL-8 pokazala je jasan pad u grupi sa nekompletno formiranim kalusom u odnosu na grupu sa kompletno formiranim kalusom i kontrolnu grupu, ali bez značajne razlike. Deca sa epifiziolizom imala su najmanje koncentracije citokina u poređenju sa svim drugim tipovima preloma. Takođe smo detetkovali značajno niže koncentracije IL-1β i MCP-1 kod bolesnika sa manjim stepenom dislokacije u odnosu na veće dislokacije fragmenata. Zaključak. Sistemski inflamatorni odgovor je važan u fiziološkom zarastanju kostiju. Visoka rana produkcija IL1-β, TNF-α i MCP-1 je udružena sa boljim formiranjem kalusa i boljim zarastanjem kostiju, dok je povećana IL-8 koncentracija udružena sa lošim formiranjem kalusa i lošim zarastanjem kostiju. Naši rezultati su pokazali da su epifizioliza i veći stepen dislokacije fragmenata udruženi sa odloženim zarastanjem fraktura.

Reference

Tsiridis E, Upadhyay N, Giannoudis P. Molecular aspects of fracture healing: which are the important molecules? Injury 2007; 38 Suppl 1: S11‒25.

Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Tsay A, Fitch J, et al. Impaired fracture healing in the absence of TNF-alpha signal-ing: the role of TNF-alpha in endochondral cartilage resorp-tion. J Bone Miner Res 2003; 18(9): 1584‒92.

Cho TJ, Gerstenfeld LC, Einhorn TA. Differential temporal ex-pression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 2002; 17(3): 513‒20.

Kon T, Cho TJ, Aizawa T, Yamazaki M, Nooh N, Graves D, et al. Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proin-flammatory cytokines during fracture healing. J Bone Miner Res 2001; 16(6): 1004‒14.

Lehmann W, Edgar CM, Wang K, Cho TJ, Barnes GL, Kakar S, et al. Tumor necrosis factor alpha (TNF-alpha) coordinately regulates the expression of specific matrix metalloproteinases (MMPS) and angiogenic factors during fracture healing. Bone 2005; 36(2): 300‒10.

Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflamma-tory sites. J Clin Invest 2007; 17(4): 902‒9.

Veillette CJH, McKee MD. Growth factors – BMPs, DBMs, and buffy coat products: are there any proven differences amongst them? Injury 2007; 38 Suppl 1: S38‒48.

Claes L, Eckert-Hübner K, Augat P. The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J Orthop Res 2002; 20(5): 1099‒105.

Kalfas IH. Principles of bone healing. Neurosurg Focus 2001;1 0(4): E1.

Dimmen S1, Nordsletten L, Engebretsen L, Steen H, Madsen JE. Negative effect of parecoxib on bone mineral during fracture healing in rats. Acta Orthop 2008; 79(3): 438‒44.

Pountos I, Georgouli T, Blokhuis TJ, Pape HC, Giannoudis PV. Pharmacological agents and impairment of fracture healing: what is the evidence? Injury 2008; 39(4): 384‒94.

Simon AM, O'Connor JP. Dose and time-dependent effects of cyclooxygenase-2 inhibition on fracture-healing. J Bone Joint Surg Am 2007; 89(3): 500‒11.

Romas E, Gillespie MT Martin TJ. Involvement of receptor ac-tivator of NFkB ligand and tumor necrosis factor-α in bone destruction in rheumatoid arthritis. Bone 2002; 30: 340‒6.

Einhorn TA, Majeska RJ, Rush EB, Levine PM, Horowitz MC. The expression of cytokine activity by fracture callus. J Bone Miner Res 1995; 10(8): 1272‒81.

Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 2003; 88(5): 873‒84.

Nanes MS, Pacifici R. Inflammatory cytokines. In: Bronner F, Farach-Carson MC, Rubin J, editors. Bone Resorption. New York, NY: Springer; 2005. p. 67–90.

Kolar P, Schmidt-Bleek K, Schell H, Gaber T, Toben D, Schmid-maier G, et al. The early fracture hematoma and its potential role in fracture healing. Tissue Eng Part B Rev 2010; 16(4): 427–34.

Schmidt-Bleek K, Schell H, Schulz N, Hoff P, Perka C, Buttgereit F, et al. Inflammatory phase of bone healing initiates the regen-erative healing cascade. Cell Tissue Res 2012; 347(3): 567–73.

Karnes JM, Daffner SD, Watkins CM. Multiple roles of tumor necrosis factor-alpha in fracture healing. Bone 2015; 78: 87–93.

Mountziaris PM, Spicer PP, Kasper FK, Mikos AG. Harnessing and Modulating Inflammation in Strategies for Bone Regener-ation. Tissue Eng Part B Rev 2011; 17(6): 393‒402.

Lacy P. Mechanisms of degranulation in neutrophils. Allergy Asthma Clin Immunol 2006; 2(3): 98‒108.

Kuziel WA, Morgan SJ, Dawson TC, Griffin S, Smithies O, Ley K, et al. Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci U S A 1997; 94(22): 12053‒8.

Ma M, Wei T, Boring L, Charo IF, Ransohoff RM, Jakeman LB. Monocyte recruitment and myelin removal are delayed follow-ing spinal cord injury in mice with CCR2 chemokine receptor deletion. J Neurosci Res 2002; 68(6): 691‒702.

Xing Z, Lu C, Hu D, Yu YY, Wang X, Colnot C, et al. Multiple roles for CCR2 during fracture healing. Dis Model Mech 2010; 3(7‒8): 451‒8.

Schell H, Duda GN, Peters A, Tsitsilonis S, Johnson KA, Schmidt-Bleek K. The haematoma and its role in bone healing. J Exp Orthop 2017; 4(1): 5.

Swiontkowski MF, Tepic S, Rahn BA, Cordey J, Perren SM. The effect of fracture on femoral head blood flow. Osteonecrosis and revascularization studied in miniature swine. Acta Orthop Scand 1993; 64(2): 196‒202.

Takeuchi T, Shidou T. Impairment of blood supply to the head of the femur after fracture of the neck. Int Orthop 1993; 17(5): 325‒9.

Lienau J, Schmidt-Bleek K, Peters A, Haschke F, Duda GN, Perka C, et al. Differential regulation of blood vessel formation be-tween standard and delayed bone healing. J Orthop Res 2009; 27(9): 1133‒40.

Lienau J, Schmidt-Bleek K, Peters A, Weber H, Bail HJ, Duda GN, et al. Insight into the molecular pathophysiology of de-layed bone healing in a sheep model. Tissue Eng Part A 2010; 16(1): 191‒9.

Kovach TK, Dighe AS, Lobo PI, Cui Q. Interactions between MSCs and immune cells: implications for bone healing. J Im-munol Res 2015; 2015: 752510.

Objavljeno
2021/05/10
Rubrika
Originalni članak