CBCT analiza gustine kosti u bikortikalnim defektima nakon pojačanja primenom aloplastičnog i ksenogenog koštanog zamenika – studija na domaćim svinjama
Sažetak
Uvod/Cilj. Vođena tkivna i vođena koštana regeneracija omogućuju značajnu korist u zarastanju bikortikalnih defekata. Cilj istraživanja bio je rendgenografska analiza koštanog zarastanja unutar bikortikalnih defekata primenom kompjuterizovane tomografije zasnovane na tehnologiji konusnog snopa (CBCT), kao i komparativna analiza gustine koštanog tkiva u bikortikalnim defektima tretiranim postupkom vođene koštane regeneracije uz korišćenje kolagene membrane i dva tipa koštanih zamenika: goveđeg ksenografta i aloplastičnog koštanog zamenika. Metode. U prvoj fazi istraživanja izvršena je ekstrakcija svih zuba interkaninog sektora donje vilice nakon čega su postekstrakcione rane zašivene. U drugoj fazi, nakon perioda zarastanja, pristupilo se formiranju bikortikalnih defekata. Nakon odizanja mukoperiostalnog režnja sa vestibularne i lingvalne strane oštrim makazicama i kiretom uklonjen je kambijalni sloj periosta u predelu budućih defekata. Zatim su sa leve i desne strane od medijalne linije formirana dva bikortikalna defekta promera 10 mm koji su popunjavani koštanim zamenicima i to aloplastičnim na levoj i goveđim ksenograftom na desnoj strani. Nakon popunjavanja defekti su prekriveni kolagenim resorptivnim
membranama obostrano, nakon čega je izvršena repozicija i ušivanje režnja. Nakon 12 nedelja eksperimentalne životinje su žrtvovane. Okolna nativna kost služila je kao kontrola. Rezultati. Analiza gustine koštanog tkiva pokazala je statistički značajnu razliku između testiranih zamenika kosti, pri čemu je bolji efekat postignut primenom aloplastičnog koštanog zamenika (p < 0,01). Nakon primene Bonferonijeve korekcije, razlika je i dalje bila statistički značajna grupe. Zaključak. Oba koštana zamenika korišćena u studiji pokazuju dobra osteokonduktivna svojstva u tretmanu bikortikalnih defekata. Gustina koštanog tkiva u defektima pojačanim aloplastičnim zamenikom je bila statistički značajno veća nego u defektima popunjavanim ksenograftom.
Reference
von Arx T, AlSaeed M. The use of regenerative techniques in apical surgery: a literature review. Saudi Dent J 2011; 23(3): 113‒
Taschieri S, Del Fabbro M, Testori T, Saita M, Weinstein R. Efficacy of guided tissue regeneration in the management of through-and-through lesions following surgical endodontics: a preliminary study. Int J Periodont Restorative Dent 2008; 28(3): 265‒
Taschieri S, Del Fabbro M, Testori T, Weinstein R. Efficacy of Xenogeneic Bone Grafting With Guided Tissue Regeneration in the Management of Bone Defects After Surgical Endodontics. J Oral Maxillofac Surg 2007; 65(6): 1121‒
Dahlin C, Gottlow J, Linde A, Nyman S. Healing of Maxillary and Mandibular Bone Defects Using a Membrane Technique: An Experimental Study in Monkeys. Scand J Plast Reconstr Surg Hand Surg 1990; 24(1): 13‒
Hämmerle C, Schmid J, Lang N, Olah A. Temporal dynamics of healing in rabbit cranial defects using guided bone regeneration. J Oral Maxillofac Surg 1995; 53(2): 167‒
Hammerle C, Jung R. Bone augmentation by means of barrier membranes. Periodontology 2000 2003; 33(1): 36‒
Eppley BL, Pietrzak WS, Blanton MW. Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. J Craniofac Surg 2005; 16(6): 981‒
Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2005; 36 (Suppl 3): S20‒
Flautre B, Hardouin P. Microradiography in the study of trabecular parameters. Acta Orthop Belg 1992; 58(3): 287‒ (French)
Altındağ A, Avsever H, Borahan O, Akyol M, Orhan K. Incidental Findings in Cone-Beam Computed Tomographic Images: Calcifications in Head and Neck Region. Balk J Dent Med 2017; 21(2): 100‒
Soardi C, Zaffe D, Motroni A, Wang H. Quantitative Comparison of Cone Beam Computed Tomography and Microradiography in the Evaluation of Bone Density after Maxillary Sinus Augmentation: A Preliminary Study. Clin Implant Dent Relat Res 2012; 16(4): 557‒
Oltramari PV, Navarro Rde L, Henriques JF, Taga R, Cestari TM, Janson G, et al. Evaluation of bone height and bone density after tooth extraction: an experimental study in minipigs. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 104(5): e9‒
Lindhe J, Karring T, Lang NP. Clinical Periodontology and Implant Dentistry. 4th ed. Oxford, UK: Blackwell Munksgaard; 2003.
Pecora G, De Leonardis D, Ibrahim N, Bovi M, Cornelini R. The use of calcium sulphate in the surgical treatment of a 'through and through' periradicular lesion. Int Endod J 2001; 34(3): 189‒
Gottlow J, Nyman S, Karring T, Lindhe J. New attachment formation as the result of controlled tissue regeneration. J Clin Periodontol 1984; 11(8): 494‒
Zitzmann NU, Naef R, Schärer P. Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants 1997; 12(6): 844‒
Tatakis D, Promsudthi A, Wikesjö U. Devices for periodontal regeneration. Periodontol 2000 1999; 19(1): 59‒
Demers C, Hamdy CR, Corsi K, Chellat F, Tabrizian M, Yahia L. Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 2002; 12(1): 15‒
Turhani D, Cvikl B, Watzinger E, Weißenböck M, Yerit K, Thurnher D, et al. In Vitro Growth and Differentiation of Osteoblast-Like Cells on Hydroxyapatite Ceramic Granule Calcified From Red Algae. J Oral Maxillofac Surg 2005; 63(6): 793‒
Baldini N, De Sanctis M, Ferrari M. Deproteinized bovine bone in periodontal and implant surgery. Dent Mat 2011; 27(1): 61‒
Jensen SS, Bornstein MM, Dard M, Bosshardt DD, Buser D. Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects. A long-term histomorphometric study in minipigs. J Biomed Mater Res B Appl Biomater 2009; 90(1): 171‒
Buser D, Hoffmann B, Bernard JP, Lussi A, Mettler D, Schenk RK. Evaluation of filling materials in membrane-protected bone defects. A comparative histomorphometric study in the mandible of miniature pigs. Clin Oral Implants Res 1998; 9(3): 137‒
Fujita R, Yokoyama A, Nodasaka Y, Kohgo T, Kawasaki T. Ultrastructure of ceramic-bone interface using hydroxyapatite and β-tricalcium phosphate ceramics and replacement mechanism of β-tricalcium phosphate in bone. Tissue Cell 2003; 35(6): 427‒
LeGeros RZ. Calcium Phosphate-Based Osteoinductive Materials. Chem Rev 2008; 108(11): 4742‒
Lee J, Ryu M, Baek H, Lee K, Seo J, Lee H. Fabrication and Evaluation of Porous Beta-Tricalcium Phosphate/Hydroxyapatite (60/40) Composite as a Bone Graft Extender Using Rat Calvarial Bone Defect Model. ScientificWorldJournal 2013; 2013: 481789.
Walsh WR, Vizesi F, Michael D, Auld J, Langdown A, Oliver R, et al. β-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Biomaterials 2008; 29(3): 266‒
Shiwaku Y, Neff L, Nagano K, Takeyama K, de Bruijn J, Dard M, et al. The Crosstalk between Osteoclasts and Osteoblasts is Dependent upon the Composition and Structure of Biphasic Calcium Phosphates. PLoS One 2015; 10(7): e0132903.
Jensen S, Broggini N, Hjorting-Hansen E, Schenk R, Buser D. Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res 2006; 17(3): 237‒
Jensen SS, Yeo A, Dard M, Hunziker E, Schenk R, Buser D. Evaluation of a novel biphasic calcium phosphate in standardized bone defects. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res 2007; 18(6): 752‒
Miron R, Sculean A, Shuang Y, Bosshardt D, Gruber R, Buser D, et al. Osteoinductive potential of a novel biphasic calcium phosphate bone graft in comparison with autographs, xenografts, and DFDBA. Clin Oral Implants Res 2015; 27(6): 668‒
Kim Y, Nowzari H, Rich SK. Risk of prion disease transmission through bovine-derived bone substitutes: a systematic review. Clin Implant Dent Relat Res 2013; 15(5): 645‒
Kim Y, Rodriguez AE, Nowzari H. The Risk of Prion Infection through Bovine Grafting Materials. Clin Implant Dent Relat Res 2016; 18(6): 1095‒
Misch CE. Contemporary implant dentistry. 3rd ed. St. Louis: Mosby/Elsevier; 2008.
Gulsahi A. Bone quality assessment for dental implants. In: Turkyilmaz I, editor. Implant dentistry - the most promising discipline of dentistry. Rijeka: Intech; 2011; p. 437‒
Misch C, Qu Z, Bidez M. Mechanical properties of trabecular bone in the human mandible: Implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg 1999; 57(6): 700‒6; discussion 706‒8.