Korelacija vrednosti gustine kosti dobijene pomoću kompjuterizovane tomografije konusnim zrakom i primarne stabilnosti implantata – klinička studija

  • Mirko Mikić University of Montenegro, Faculty of Medicine, Department of Dentistry, Podgorica, Montenegro
  • Zoran Vlahović University of Priština – Kosovska Mitrovica, Faculty of Medicine, †Department of Dentistry, Kosovska Mitrovica, Serbia
  • Dragoslav Nenezić University of Montenegro, Faculty of Medicine, Department of Dentistry, Podgorica, Montenegro
  • Goran Videnović University of Priština – Kosovska Mitrovica, Faculty of Medicine, Department of Dentistry, Kosovska Mitrovica, Serbia
  • Danijela Ilić University of Priština – Kosovska Mitrovica, Faculty of Medicine, Department of Preventive Medicine, Kosovska Mitrovica, Serbia
  • Raša Mladenović University of Priština – Kosovska Mitrovica, Faculty of Medicine, †Department of Dentistry, ‡Department of Preventive Medicine, Kosovska Mitrovica, Serbia
Ključne reči: kost, gustina, tomografija, kompjuterizovana, konusna, implantati, stomatološki, lečenje, ishod

Sažetak


Uvod/Cilj. Postoje mnogobrojne studije o korisnosti kompjuterizovane tomografije (KT) u proceni volumena i morfologije kosti, kao i o odnosu između KT i primarne stabilnosti implantata. Međutim, malo je podataka o povezanosti gustine kosti i vrednosti primarne stabilnosti implantata. Cilj studije bio je da se ispita povezanost gustine kosti dobijene putem KT konusnim zrakom i vrednosti primarne stabilnosti. Metode. Klinička prospektivna eksperimantalna studija je obavljena kod 38 zdravih pacijenata sa nedostatkom jednog zuba u bočnoj regiji. Planirana je ugradnja samourezujućih Bredent Blue Sky Narrow dentalnih implantata dimenzija 3,5 × 10 mm. U preoperativnoj pripremi urađen je snimak KT konusnim zrakom na aparatu Planmeca, a zatim su u softveru aparata za KT konusnim zrakom (Romexis) izvršena preimplantološka merenja i planiranja. Srednja vrednost prosečne gustine kosti je automatski dobijena i izražena u Hounsfield jedinicama (HU). Nakon postavljanja implantata izvršili smo merenja primarne stabilnosti implantata pomoću Osstell aparata. Rezultati. Od 38 pacijenata uključenih u studiju, 68,4% je bilo muškog, a 31,6% ženskog pola. Aritmetička sredina izmerene gustine kosti svih ispitanika u istraživanju iznosila je 536,2 HU. Aritmetička sredina primarne stabilnosti dentalnih implantata svih ispitanika u istraživanju iznosila je 68,7 ISQ. Utvrđena je statistički značajna jaka pozitivna povezanost HU i ISQ (r = 0,744, p < 0,001). Više vrednosti HU bile su povezane sa višim vrednostima ISQ. U modelu multivarijantne linearne regresije statistički značajni prediktori viših vrednosti ISQ bili su: muški pol (B = 4,669; p = 0,047) i više vrednosti HU (B = 0,032; p < 0,001). Zaključak. U našoj kliničkoj studiji smo pokazali da postoji statistički značajna jaka pozitivna povezanost između gustine kosti izražene HU jedinicama, izmerene u softveru aparata za KT konusnim zrakom i primarne stabilnosti dentalnih implantata izraženih u ISQ jedinicama.

##submission.citations##

Pauwels R, Jacobs R, Singer SR, Mupparapu M. CBCT-based bone quality assessment: are Hounsfield units applicable?. Dentomaxillofac Radiol 2015; 44(1): 20140238.

Chou IC, Lee SY, Jiang CP. Effects of implant neck design on primary stability and overload in a type IV mandibular bone. Int J Numer Method Biomed Eng 2014; 30(11): 1223‒37.

Möhlhenrich SC, Kniha K, Heussen N, Hölzle F, Modabber A. Ef-fects on primary stability of three different techniques for im-plant site preparation in synthetic bone models of different densities. Br J Oral Maxillofac Surg 2016; 54(9): 980–6.

Vlahovic Z, Mihailovic B, Lazic Z, Golubovic M. Comparative ra-diographic and resonance frequency analyses of the peri-implant tissue after dental implants placement using flap and flapless techniques: An experimental study on domestic pigs. Vojnosanit Pregl 2013; 70(6): 586‒94.

Becker W, Hujoel P, Becker BE. Resonance frequency analysis: Comparing two clinical instruments. Clin Implant Dent Relat Res 2018; 20(3): 308–12.

Heinemann F, Hasan I, Bourauel C, Biffar R, Mundt T. Bone sta-bility around dental implants: Treatment related factors. Ann Anat 2015; 199: 3‒8.

Spies BC, Bateli M, Ben Rahal G, Christmann M, Vach K, Kohal RJ. Does Oral Implant Design Affect Marginal Bone Loss? Re-sults of a Parallel-Group Randomized Controlled Equivalence Trial. Biomed Res Int 2018; 2018: 8436437.

Rokn A, Ghahroudi AR, Mesgarzadeh A, Miremadi A, Yaghoobi S. Evaluation of stability changes in tapered and parallel wall implants: a human clinical trial. J Dent (Tehran) 2011; 8(4): 186–200.

Bilhan H, Bilmenoglu C, Urgun AC, Ates G, Bural C, Cilingir A, et al. Comparison of the Primary Stability of Two Implant Designs in Two Different Bone Types: An In Vitro Study. Int J Oral Maxillofac Implants 2015; 30(5): 1036‒40.

Greenberg AM. Cone beam computed tomography scanning and diagnosis for dental implants. Oral Maxillofac Surg Clin North Am 2015; 27(2): 185–202.

Misch CE. Density of bone: effect on treatment planning, sur-gical approach and healing. In: Misch CE, editor. Contempo-rary implant dentistry. 3rd ed. St. Louis: Mosby; 2007. p. 469–85.

Lekholm U, Zarb GA. Patient selection and preparation. In: Branemark PI, Zarb GA, Albrektsson T, editors. Tissue-Integrated Prostheses: Osseointegration In Clinical dentistry. Chicago: Quintessence; 1985. p. 199–209.

Norton MR, Gamble C. Bone classification: an objective scale of bone density using the computerized tomography scan. Clin Oral Implants Res 2001; 12(1): 79‒84.

Engfors I, Örtorp A, Jemt T. Fixed implant-supported prosthe-ses in elderly patients: a 5-year retrospective study of 133 edentulous patients older than 79 years. Clin Implant Dent Relat Res 2004; 6(4): 190‒8.

De Backer H, Van Maele G, De Moor N, Van den Berghe L. Sin-gle tooth replacement: Is a 3-unit fixed partial denture still an option? A 20 year retrospective study. Int J Prosthodont 2006; 19(6): 567–73.

Turkyilmaz I. Clinical and radiological results of patients treat-ed with two loading protocols for mandibular overdentures on Branemark implants. J Clin Periodontol 2006; 33(3): 233‒8.

Jemt T, Lekholm U. Implant treatment in edentulous maxilla: a five-year fol- low-up report on patients with different degrees of jaw resorption. Int J Oral Maxillofac Implants 1995; 10(3): 303–11.

Kaptein ML, De Lange GL, Blijdorp PA. Peri-implant tissue health in reconstructed atrophic maxillae--report of 88 pa-tients and 470 implants. J Oral Rehabil 1999; 26(6): 464–74.

Grunder U. Immediate functional loading of immediate im-plants in edentulous arches: two-year results. Int J Periodon-tics Restorative Dent 2001; 21(6): 545–51.

Marković A, Calvo-Guirado JL, Lazić Z, Gómez-Moreno G, Ćala-san D, Guardia J, et al. Evaluation of Primary Stability of Self-Tapping and Non-Self-Tapping Dental Implants. A 12-Week Clinical Study. Clin Implant Dent Relat Res 2013; 15(3): 341‒9.

Homolka P, Beer A, Birkfellner W, Nowotny R, Gahleitner A, Tschabitscher M, et al. Bone Mineral Density Measurement with Dental Quantitative CT Prior to Dental Implant Placement in Cadaver Mandibles: Pilot Study. Radiology 2002; 224(1): 247‒52.

Fanuscu MI, Chang TL. Three-dimensional morphometric anal-ysis of human cadaver bone: microstructural data from maxilla and mandible. Clin Oral Implants Res 2004; 15(2): 213‒8.

Hanazawa T, Sano T, Seki K, Okano T. Radiologic measure-ments of the mandible: a comparison between CT-reformatted and conventional tomographic images. Clin Oral Implants Res 2004; 15(2): 226‒32.

Beer A, Gahleitner A, Holm A, Tschabitscher M, Homolka P. Cor-relation of insertion torques with bone mineral density from dental quantitative CT in the mandible. Clin Oral Implants Res 2003; 14(5): 616‒20.

Ikumi N, Tsutsumi S. Assessment of correlation between com-puterized tomography values of the bone and cutting torque values at implant placement: a clinical study. Int J Oral Maxil-lofac Implants 2005; 20(2): 253–60.

Turkyilmaz I, Tözüm TF, Tumer C, Ozbek EN. Assessment of correlation between computerized tomography values of the bone, and maximum torque and resonance frequency values at dental implant placement. J Oral Rehabil 2006; 33(12): 881‒8.

Turkyilmaz I, Tumer C, Ozbek EN, Tözüm TF. Relations be-tween the bone density values from computerized tomogra-phy, and implant stability parameters: a clinical study of 230 regular platform implants. J Clin Periodontol 2007; 34(8): 716–22.

Strub JR, Jurdzik BA, Tuna T. Prognosis of immediately loaded implants and their restorations: a systematic literature review. J Oral Rehabil 2012; 39(9): 704–17.

Vlahović Z, Mikić M. 3D Printing Guide Implant Placement: A Case Report. Balk J Dent Med 2017; 21(1): 65‒8.

Shapurian T, Damoulis PD, Reiser GM, Griffin TJ, Rand WM. Quantitative evaluation of bone density using the Hounsfield index. Int J Oral Maxillofac Implants 2006; 21(2): 290–7.

Tatli U, Salimov F, Kürkcü M, Akoğlan M, Kurtoğlu C. Does cone beam computed tomography-derived bone density give pre-dictable data about stability changes of immediately loaded implants?: A 1-year resonance frequency follow-up study. J Craniofac Surg 2014; 25(3): e293–9.

Fuster-Torres MA, Peñarrocha-Diago M, Peñarrocha-Oltra D. Rela-tionships between bone density values from cone beam com-puted tomography maximum insertion torque, and resonance frequency analysis at implantplacement: a pilot study. Int J Oral Maxillofac Implants 2011; 26(5): 1051–6.

Hiasa K, Abe Y, Okazaki Y, Nogami K, Mizumachi W, Akagawa Y. Preoperative Computed Tomography-Derived Bone Densi-ties in Hounsfield Units at Implant Sites Acquired Primary Stability. ISRN Dent 2011; 2011: 678729

Marquezan M, Osório A, Sant'Anna E, Souza MM, Maia L. Does bone mineral density influence the primary stability of dental implants? A systematic review. Clin Oral Implants Res 2012; 23(7): 767‒74.

Herekar M, Sethi M, Ahmad T, Fernandes AS, Patil V, Kulkarni H. A correlation between bone (B), insertion torque (IT), and implant stability (S): BITS score. J Prosthet Dent 2014; 112(4): 805–10.

Objavljeno
2021/08/24
Rubrika
Originalni članak