Markeri koštanog metabolizma u medikamentnoj i fiziološkoj hiperprolaktinemiji kod ženki pacova

  • Danijela Radojković Clinic of Endocrinology, Clinic Center Niš, Niš, Serbia
  • Milica Pešić Clinic of Endocrinology, Clinic Center Niš, Niš, Serbia
  • Tatjana Ristić Center for Medical Biochemistry, Clinic Center Niš, Niš, Serbia
Ključne reči: hyperprolactinemia||, ||hiperprolaktinemije, pregnancy||, ||trudnoća, sulpiride||, ||sulpirid, rats||, ||pacovi, osteogenesis||, ||osteogeneza, biological markers||, ||biološki pokazatelji, calcium||, ||kalcijum, phosphorus||, ||fosfor, osteocalcin||, ||osteokalcin,

Sažetak


Uvod/Cilj. Nema dovoljno podataka o efektima prolaktina na metabolizam kalcijuma i koštani promet kod hiperprolaktinemije različitog porekla. Cilj ovog rada bio je da uporedi uticaj medikamentne i fiziološke hiperprolaktinemije na koštani metabolizam kod ženki pacova. Metode. Eksperimentalne životinje (ženke pacova soja Wistar, stare 18 nedelja) podeljene su na sledeće grupe: grupa P – devet pacova u trećoj nedelji trudnoće; grupa M3 – 10 pacova, kojima je tokom tri nedelje, dva puta dnevno, davan intramuskularno sulpirid (10 mg/kg); grupa M6 – 10 pacova kojima je tokom šest nedelja, davan sulpirid (10 mg/kg) intramuskularno, dva puta dnevno; starosno odgovarajuće nulipare ženke pacova kao kontrolne grupe: C1 – 10 pacova, starih 18 nedelja i C2 – sedam pacova, starih 24 nedelje. Određivana je koncentracija jonizovanog kalcijuma i fosfora u serumu, 24-časovno izlučivanje kalcijuma i fosfora urinom, osteokalcin i serumski amino terminalni propeptid prokolagena tipa I (P1NP). Rezultati. U poređenju sa kontrolnom grupom eksperimentalne životinje u grupi P imale su snižen jonizovan kalcijum u serumu (0,5 ± 0,2 vs 1,12 ± 0,04 mmol/L; p < 0,001), povišene fosfate u serumu (2,42 ± 0,46 vs 2,05 ± 0,2mmol/L; p < 0,05), povećano 24-časovno izlučivanje kalcijuma urinom (3,90 ± 0,46 vs 3,05 ± 0,58 mmol/24 h; p < 0,01) i značajno povišen P1NP (489,22 ± 46,77 vs 361,9 ± 53,01 pg/mL; p < 0,001). Značajan pad P1NP zabeležen je u eksperimentalnoj grupi M3 u poređenju sa kontrolnom grupom. Prolongirana medikamentna hiperprolaktinemija u grupi M6 dovela je do porasta jonizovanog kalcijuma u serumu (1,21 ± 0,03 vs 1,15 ± 0,02mmol/L; p < 0,001), pada fosfata (1,70 ± 0,13 vs 1,89 ± 0,32 mmol/L; p < 0,001) i sniženja koncentracije osteokalcina i P1NP. Zaključak. Fiziološka hiperprolaktinemija u manjoj meri utiče na koštani metabolizam nego medikamentna hiperprolaktinemija. Hronična medikamentna hiperprolaktinemija dovodi do pada koncentracije P1NP, što je odraz snižene koštane formacije. Rutinsko određivanje biohemijskih markera koštanog metabolizma u prolongiranoj medikamentnoj hiperprolaktinemiji pruža mogućnost ranije dijagnoze poremećaja koštanog metabolizma.

Reference

Mancini T, Casanueva FF, Giustina A. Hyperprolactinemia and prolactinomas. Endocrinol Metab Clin North Am 2008; 37(1): 67−99.

Greenspan SL, Neer RM, Ridgway EC, Klibanski A. Osteoporosis in men with hyperprolactinemic hypogonadism. Ann Intern Med 1986; 104(6): 777−82.

Schlechte J, Khoury G, Kathol M, Walkner L. Forearm and verte-bral bone mineral in treated and untreated hyperprolactinemic amenorrhea. J Clin Endocrinol Metab 1987; 64(5): 1021−6.

Biller BM, Baum HB, Rosenthal DI, Saxe VC, Charpie PM, Kliban-ski A. Progressive trabecular osteopenia in women with hy-perprolactinemic amenorrhea. J Clin Endocrinol Metab 1992; 75(3): 692−7.

Vestergaard P, Jorgensen JOL, Hagen C, Hoeck HC, Laurberg P, Rejnmark L, et al. Fracture risk is increased in patients with GH deficiency or untreated prolactinomas - a case-control study. Clin Endocrinol (Oxf) 2002; 56(2): 159−67.

Zadrozna-Sliwka B, Bolanowski M, Kałuzny M, Syrycka J. Bone mineral density and bone turnover in hyperprolactinaemia of various origins. Endokrynol Pol 2007; 58(2): 116−22.

Adler RA, Farrell ME, Deiss WP, Krieg RJ, MacLeod RM. Hyper-calciuria in a new rat model of hyperprolactinemia. Metab Clin Exp 1991; 40(3): 292−6.

Haddad PM, Wieck A. Antipsychotic-induced hyperprolactin-aemia: mechanisms, clinical features and management. Drugs 2004; 64(20): 2291−314.

Howard L, Kirkwood G, Leese M. Risk of hip fracture in patients with a history of schizophrenia. Br J Psychiatry 2007; 190: 129−34.

Muench J, Hamer A. Adverse effects of antipsychotic medica-tions. Am Fam Physician 2010; 81(5): 617−22.

Lotinun S, Limlomwongse L, Krishnamra N. The study of a physiological significance of prolactin in the regulation of cal-cium metabolism during pregnancy and lactation in rats. Can J Physiol Pharmacol 1998; 76(2): 218−28.

Kovacs CS. Calcium and bone metabolism in pregnancy and lactation. J Clin Endocrinol Metab 2001; 86(6): 2344−8.

Lotinun S, Limlomwongse L, Sirikulchayanonta V, Krishnamra N. Bone calcium turnover, formation, and resorption in bro-mocriptine- and prolactin-treated lactating rats. Endocrine 2003; 20(1−2): 163−70.

Polatti F, Capuzzo E, Viazzo F, Colleoni R, Klersy C. Bone mineral changes during and after lactation. Obstet Gynecol 1999; 94(1): 52–6.

Karlsson C, Obrant KJ, Karlsson M. Pregnancy and lactation con-fer reversible bone loss in humans. Osteoporos Int 2001; 12(10): 828−34.

Bezerra FF, Mendonça LM, Lobato EC, Brien KO, Donangelo CM. Bone mass is recovered from lactation to postweaning in ado-lescent mothers with low calcium intakes. Am J Clin Nutr 2004; 80(5): 1322−6.

Streeten EA, Ryan KA, McBride DJ, Pollin TI, Shuldiner AR, Mitchell BD. The relationship between parity and bone mineral density in women characterized by a homogeneous lifestyle and high parity. J Clin Endocrinol Metab 2005; 90(8): 4536−41.

Lenora J, Lekamwasam S, Karlsson MK. Effects of multiparity and prolonged breast-feeding on maternal bone mineral density: a community-based cross-sectional study. BMC Womens Health 2009; 9: 19.

Cross NA, Hillman LS, Allen SH, Krause GF, Vieira NE. Cal-cium homeostasis and bone metabolism during pregnancy, lactation, and postweaning: a longitudinal study. Am J Clin Nutr 1995; 61(3): 514−23.

Ritchie LD, Fung EB, Halloran BP, Turnlund JR, Van LM, Cann CE, et al. A longitudinal study of calcium homeostasis during human pregnancy and lactation and after resumption of men-ses. Am J Clin Nutr 1998; 67(4): 693−701.

Kovacs CS, Kronenberg HM. Maternal-fetal calcium and bone me-tabolism during pregnancy, puerperium, and lactation. Endocr Rev 1997; 18(6): 832−72.

Mahadevan S, Kumaravel V, Bharath R. Calcium and bone disorders in pregnancy. Indian J Endocrinol Metab 2012; 16(3): 358−63.

Rasmussen N, Frolich A, Hornnes PJ, Hegedus L. Serum ionized calcium and intact parathyroid hormone levels during preg-nancy and postpartum. Br J Obestet Gynecol 1990; 97(9): 857−62.

Dahlman T, Sjöberg HE, Bucht E. Calcium homeostasis in nor-mal pregnancy and puerperium. A longitudinal study. Acta Obstet Gynecol Scand 1994; 73(5): 393−8.

Garner SC, Peng TC, Toverud SU. Modulation od serum parathyroid hormone and ionized calcium concentrations during reproduction in rats fed a low calcium diet. J Bone Miner Res 1988; 3(3): 319−23.

Boass A, Garner SC, Schultz VL, Toverud SU. Regulation of Se-rum Calcitriol by Serum Ionized Calcium in Rats During Preg-nancy and Lactation. J Bone Miner Res 1997; 12(6): 909−14.

Peacock M. Calcium Metabolism in Health and Disease. Clin J Am Soc Nephrol 2010; 5(Supplement 1): 23−30.

Gallacher SJ, Fraser WD, Owens OJ, Dryburgh FJ, Logue FC, Jen-kins A, et al. Changes in calciotrophic hormones and bio-chemical markers of bone turnover in normal human preg-nancy. Eur J Endocrinol 1994; 131(4): 369−74.

Cole DE, Gundberg CM, Stirk LJ, Atkinson SA, Hanley DA, Ayer LM, et al. Changing osteocalcin concentrations during preg-nancy and lactation: implications for maternal mineral metabo-lism. J Clin Endocrinol Metab 1987; 65(2): 290−4.

Cross NA, Hillman LS, Allen SH, Krause GF. Changes in bone mineral density and markers of bone remodeling during lacta-tion and postweaning in women consuming high amounts of calcium. J Bone Miner Res 1995; 10(9): 1312−20.

Hellmeyer L, Ziller V, Anderer G, Ossendorf A, Schmidt S, Hadji P. Biochemical markers of bone turnover during pregnancy: a longitudinal study. Exp Clin Endocrinol Diabetes 2006; 114(9): 506−10.

Rosenzweig P, Canal M, Patat A, Bergougnan L, Zieleniuk I, Bianchetti G. A review of the pharmacokinetics, tolerability and pharmacodynamics of amisulpride in healthy volunteers. Hum Psychopharmacol 2002; 17(1): 1−13.

Beaulieu J, Gainetdinov RR. The physiology, signaling, and phar-macology of dopamine receptors. Pharmacol Rev 2011; 63(1): 182−217.

Stojilkovic SS, Murano T, Gonzalez-Iglesias AE, Andric SA, Popovic MA, Van GF, et al. Multiple roles of Gi/o protein-coupled re-ceptors in control of action potential secretion coupling in pi-tuitary lactotrophs. Ann NY Acad Sci 2009; 1152: 174−86.

Aydin H, Mutlu N, Akbas NB. Treatment of a major depres-sion episode suppresses markers of bone turnover in premenopausal women. J Psychiatr Res 2011; 45(10): 1316−20.

Yang J, Joe S, Lee M, Ko Y, Jung I, Kim S. Effects of long-term combination treatment with valproate and atypical antipsy-chotics on bone mineral density and bone metabolism in premenopausal patients with bipolar disorder: a preliminary study. Psychiatry Investig 2011; 8(3): 256−61.

Wyszogrodzka-Kucharska A, Rabe-Jabłońska J. Calcium balance and regulation in schizophrenic patients treated with second generation antipsychotics. Psychiatr Pol 2005; 39(6): 1157−71.

Tanrattana C, Charoenphandhu N, Limlomwongse L, Krishnamra N. Prolactin directly stimulated the solvent drag-induced calcium transport in the duodenum of female rats. Biochim Biophys Acta 2004; 1665(1−2): 81−91.

Charoenphandhu N, Limlomwongse L, Krishnamra N. Prolactin di-rectly enhanced Na+/K+- and Ca2+-ATPase activities in the duodenum of female rats. Can J Physiol Pharmacol 2006; 84(5): 555−63.

Jantarajit W, Thongon N, Pandaranandaka J, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N. Prolactin-stimulated transepi-thelial calcium transport in duodenum and Caco-2 monolayer are mediated by the phosphoinositide 3-kinase pathway. Am J Physiol Endocrinol Metab 2007; 293(1): 372−84.

Charoenphandhu N, Krishnamara N. Prolactin is an important regulator of intestinal calcium transport. Can J Physiol Phar-macol 2007; 85(6): 569−81.

Bataille-Simoneau N, Gerland K, Chappard D, Basle MF, Mercier L. Expression of prolactin receptors in human osteosarcoma cells. Biochem Biophys Res Commun 1996; 229(1): 323−8.

Clément-Lacroix P, Ormandy C, Lepescheux L, Ammann P, Damotte D, Goffin V, et al. Osteoblasts are a new target for prolactin: analysis of bone formation in prolactin receptor knockout mice. Endocrinology 1999; 140(1): 96−105.

Charoenphandhu N, Tudpor K, Thongchote K, Saengamnart W, Pun-theeranurak S, Krishnamra N. High-calcium diet modulates ef-fects of long term prolactin exposure on the cortical content in ovariectomized rats. Am J Physiol Endocrinol Metab 2007; 292(2): E443−52.

Herrán A, Amado JA, García-Unzueta MT, Vázquez-Barquero JL, Perera L, González-Macías J. Increased bone remodeling in first-episode major depressive disorder. Psychosom Med 2000; 62(6): 779−82.

Kahl KG, Greggersen W, Rudolf S, Stoeckelhuber BM, Bergmann-Koester CU, Dibbelt L, et al. U. Bone mineral density, bone turnover, and osteoprotegerin in depressed women with and without borderline personality disorder. Psychosom Med 2006; 60(6): 669−74.

Lee T, Chung M, Chung H, Choi J, Kim T, So H. Bone density in chronic schizophrenia with long-term antipsychotic treatment: preliminary study. Psychiatry Investig 2010; 7(4): 278−84.

Objavljeno
2015/04/23
Broj časopisa
Rubrika
Originalni članak