Sličan masnokiselinski status kod žena sa novodijagnostikovanim karcinomom dojke i onih koje su na terapiji inhibitorima aromataze
Sažetak
Uvod/Cilj. Promene u metabolizmu masnih kiselina prepoznate su kao komponenta maligne transformacije u mnogim različitim vrstama kancera, uključujući i karcinom dojke (KD), a često su povezane sa progresijom i prognozom bolesti. Adjuvantna endokrina terapija KD, korišćenjem inhibitora aromataze, takođe može uticati na metabolizam masnih kiselina (MK). Zbog toga je cilj ovog rada bio da se uporede MK profili iz ukupnih lipida plazme kod žena u menopauzi, a kojima je dijagnostikovan KD, i onih sa KD koje su na terapiji inhibitorima aromataze najmanje dve godine, sa MK profilima kontrolne grupe. Metode. U studiju je bilo uključeno 17 žena sa novodijagnostikovanim KD (ND grupi) i 21 žena sa KD koje su na terapiji inhibitorima aromataze (AI grupi). Kontrolnu grupu je činilo 15 uslovno zdravih žena u menopauzi koje nisu imale porodičnu anamnezu za KD i koje su po godinama i indeksu telesne mase poređene sa bolesnicama. Rezultati. Procenat vakcenske (18:1n-7), alfa-linolenske (18:3n-3), gama-linolenske (18:3n-6) i dokozapentaenske (22:5n-3) kiseline bio je značajno niži, dok je procenat dihomo-gama-
linolenske kiseline (20:3n-6) bio značajno viši, kod obe grupe bolesnica u odnosu na kontrolnu grupu. Sa druge strane, niži nivo stearinske kiseline (18:0) pronašli smo u samo AI grupi, dok je visok nivo linolne kiseline (18:2n-6) utvrđen samo u ND grupi u odnosu na kontrolu. Smanjena procenjena aktivnost D6 i D5 desaturaze nađena je kod obe grupe bolesnica u odnosu na kontrolnu grupu. Zaključak. Naši rezultati su pokazali veoma sličan MK profil kod žena sa tek dijagnostikovanim KD i onih koje su na terapiji inhibitorima aromataze najkraće dve godine, ali i da se njihovi MK profili u velikoj meri razlikuju od MK profila kontrolne grupe. Zbog toga, suplementacija n-3 masnim kiselinama i gama linolenskom kiselinom može biti korisna za ove bolesnice, i buduće studije bi mogle ispitivati potencijalnu korist ovih suplemenata.
Reference
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394–424.
Cao Y, Hou L, Wang W. Dietary total fat and fatty acids intake, serum fatty acids and risk of breast cancer: A meta-analysis of prospective cohort studies. Int J Cancer 2016; 138(8): 1894–904.
Evans LM, Cowey SL, Siegal GP, Hardy RW. Stearate preferentially induces apoptosis in human breast cancer cells. Nutr Cancer 2009; 61(5): 746–53.
Simone V, D’Avenia M, Argentiero A, Felici C, Rizzo FM, De Pergola G, et al. Obesity and Breast Cancer: Molecular Interconnections and Potential Clinical Applications. Oncologist 2016; 21(4): 404–17.
Deyarmin B, Kane JL, Valente AL, van Laar R, Gallagher C, Shriver CD, et al. Effect of ASCO/CAP guidelines for determining ER status on molecular subtype. Ann Surg Oncol 2013; 20(1): 87–93.
Basu S, Harris H, Wolk A, Rossary A, Caldefie-Chezet F, Vasson M-P, et al. Inflammatory F2-isoprostane, prostaglandin F2alpha, pentraxin 3 levels and breast cancer risk: The Swedish Mammography Cohort. Prostaglandins Leukot Essent Fatty cids 2016; 113: 28–32.
Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000; 406(6797): 747–52.
Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 2001; 98(19): 10869–74.
Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 2003; 100(14): 8418–23.
Eisen A, Fletcher GG, Gandhi S, Mates M, Freedman OC, Dent SF, et al. Optimal systemic therapy for early breast cancer in women: a clinical practice guideline. Curr Oncol 2015; 22(Suppl 1): S67−81.
Dieckmeyer M, Ruschke S, Rohrmeier A, Syvari J, Einspieler I, Seifert-Klauss V, et al. Vertebral bone marrow fat fraction changes in postmenopausal women with breast cancer receiving combined aromatase inhibitor and bisphosphonate therapy. BMC Musculoskelet Disord 2019; 20(1): 515.
Schiavon G, Smith IE. Status of adjuvant endocrine therapy for breast cancer. Breast Cancer Res 2014; 16(2): 206.
Munir R, Lisec J, Swinnen J V, Zaidi N. Lipid metabolism in cancer cells under metabolic stress. Br J Cancer 2019; 120(12): 1090–8.
Chajes V, Thiebaut ACM, Rotival M, Gauthier E, Maillard V, Boutron-Ruault MC, et al. Association between serum trans-monounsaturated fatty acids and breast cancer risk in the E3N-EPIC Study. Am J Epidemiol 2008; 167(11): 1312–20.
Vatten LJ, Bjerve KS, Andersen A, Jellum E. Polyunsaturated fatty acids in serum phospholipids and risk of breast cancer: a case-control study from the Janus serum bank in Norway. Eur J Cancer 1993; 29A(4): 532–8.
Saadatian-Elahi M, Toniolo P, Ferrari P, Goudable J, Akhmedkhanov A, Zeleniuch-Jacquotte A, et a Serum fatty acids and risk of breast cancer in a nested case-control study of the New York University Women’s Health Study. Cancer Epidemiol Biomarkers Prev 2002; 11(11): 1353−60.
Zuijdgeest-van Leeuwen SD, van der Heijden MS, Rietveld T, van den Berg JWO, Tilanus HW, Burgers JA, et al. Fatty acid composition of plasma lipids in patients with pancreatic, lung and oesophageal cancer in comparison with healthy subjects. Clin Nutr 2002; 21(3): 225–30.
McClinton S, Moffat LE, Horrobin DF, Manku MS. Abnormalities of essential fatty acid distribution in the plasma phospholipids of patients with bladder cancer. Br J Cancer 1991; 63(2): 314–6.
Cvetkovic Z, Vucic V, Cvetkovic B, Petrovic M, Ristic-Medic D, Tepsic J, et al. Abnormal fatty acid distribution of the serum phospholipids of patients with non-Hodgkin lymphoma. Ann Hematol 2010; 89(8): 775–82.
Lisboa AQ, Rezende M, Muniz-Junqueira MI, Ito M Altered plasma phospholipid fatty acids and nutritional status in patients with uterine cervical cancer. Clin Nutr 2008; 27(3): 371–7.
Cvetkovic B, Vucic V, Cvetkovic Z, Popovic T, Glibetic M. Systemic alterations in concentrations and distribution of plasma phospholipids in prostate cancer patients. Med Oncol 2012; 29(2): 809–14.
MacDonald N, Easson AM, Mazurak VC, Dunn GP, Baracos VE. Understanding and managing cancer cachexia. J Am Coll Surg 2003; 197(1):143–61.
Adzic M, Niciforovic A, Vucic V, Neskovic-Konstantinovic Z, Spasic SD, Jones DR, et al. Systemic NF-kappaB activation in blood cells of breast cancer patients. Redox Rep 2006; 11(1): 39–44.
Marra CA, de Alaniz MJ, Brenner RR. Modulation of delta 6 and delta 5 rat liver microsomal desaturase activities by dexamethasone-induced factor. Biochim Biophys Acta 1986; 879(3): 388–93.
Sawada S, Sato K, Kusuhara M, Ayaori M, Yonemura A, Tamaki K, et al. Effect of anastrozole and tamoxifen on lipid metabolism in Japanese postmenopausal women with early breast cancer. Acta Oncol 2005; 44(2): 134–41.
Nikolic Turnic T, Arsic A, Vucic V, Petrovic S, Ristic-Medic D, Zivkovic V, et al. Hydroxymethylglutaryl Coenzyme a Reductase Inhibitors Differentially Modulate Plasma Fatty Acids in Rats With Diet-Induced-Hyperhomocysteinemia: Is omega-3 Fatty Acids Supplementation Necessary? Front Physiol 2019; 10: 892.
Ristic-Medic D, Suzic S, Vucic V, Takic M, Tepsic J, Glibetic M. Serum and erythrocyte membrane phospholipids fatty acid composition in hyperlipidemia: Effects of dietary intervention and combined diet and fibrate therapy. Gen Physiol Biophys 2009; 28 Spec No: 190−9.
Tepsic J, Vucic V, Arsic A, Mazic S, Djelic M, Glibetic M. Unfavourable plasma and erythrocyte phospholipid fatty acid profile in elite amateur boxers. Eur J Sport Sci 2013; 13(4): 414−21.
Cvetkovic Z, Vucic V, Cvetkovic B, Karadzic I, Ranic M, Glibetic M. Distribution of plasma fatty acids is associated with response to chemotherapy in non-Hodgkin’s lymphoma patients. Med Oncol 2013; 30(4): 741.
Pratt VC, Watanabe S, Bruera E, Mackey J, Clandinin MT, Baracos VE, et al. Plasma and neutrophil fatty acid composition in advanced cancer patients and response to fish oil supplementation. Br J Cancer 2002; 87(12): 1370–8.
Pala V, Krogh V, Muti P, Chajes V, Riboli E, Micheli A, et al. Erythrocyte membrane fatty acids and subsequent breast cancer: a prospective Italian study. J Natl Cancer Inst 2001; 93(14): 1088–95.
Chajes V, Hulten K, Van Kappel AL, Winkvist A, Kaaks R, Hallmans G, et al. Fatty-acid composition in serum phospholipids and risk of breast cancer: an incident case-control study in Sweden. Int J Cancer 1999; 83(5): 585–90.
Takata Y, King IB, Neuhouser ML, Schaffer S, Barnett M, Thornquist M, et al. Association of serum phospholipid fatty acids with breast cancer risk among postmenopausal cigarette smokers. Cancer Causes Control 2009; 20(4): 497–504.
Green CD, Ozguden-Akkoc CG, Wang Y, Jump DB, Olson LK. Role of fatty acid elongases in determination of de novo synthesized monounsaturated fatty acid species. J Lipid Res 2010; 51(7): 1871–7.
Brasky TM, Till C, White E, Neuhouser ML, Song X, Goodman P, et Serum phospholipid fatty acids and prostate cancer risk: results from the prostate cancer prevention trial. Am J Epidemiol 2011; 173(12): 1429–39.
Crowe FL, Allen NE, Appleby PN, Overvad K, Aardestrup I V, Johnsen NF, et al. Fatty acid composition of plasma phospholipids and risk of prostate cancer in a case-control analysis nested within the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 2008; 88(5): 1353–63.
Saadatian-Elahi M, Norat T, Goudable J, Riboli E. Biomarkers of dietary fatty acid intake and the risk of breast cancer: a meta-analysis. Int J Cancer 2004; 111(4): 584–91.
Howe GR, Hirohata T, Hislop TG, Iscovich JM, Yuan JM, Katsouyanni K, et al. Dietary factors and risk of breast cancer: combined analysis of 12 case-control studies. J Natl Cancer Inst 1990; 82(7): 561–9.
Howe GR, Friedenreich CM, Jain M, Miller A A cohort study of fat intake and risk of breast cancer. J Natl Cancer Inst 1991; 83(5): 336–40.
Pouchieu C, Chajes V, Laporte F, Kesse-Guyot E, Galan P, Hercberg S, et al. Prospective associations between plasma saturated, monounsaturated and polyunsaturated fatty acids and overall and breast cancer risk - modulation by antioxidants: a nested case-control study. PLoS One 2014; 9(2): e90442.
Menendez JA, Ropero S, Mehmi I, Atlas E, Colomer R, Lupu R. Overexpression and hyperactivity of breast cancer-associated fatty acid synthase (oncogenic antigen-519) is insensitive to normal arachidonic fatty acid-induced suppression in lipogenic tissues but it is selectively inhibited by tumoricidal alpha-linolenic and gamma-linolenic fatty acids: a novel mechanism by which dietary fat can alter mammary tumorigenesis. Int J Oncol 2004; 24(6): 1369–83.
Chajes V, Jenab M, Romieu I, Ferrari P, Dahm CC, Overvad K, et al. Plasma phospholipid fatty acid concentrations and risk of gastric adenocarcinomas in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST). Am J Clin Nutr 2011; 94(5): 1304–13.
Chavarro JE, Stampfer MJ, Li H, Campos H, Kurth T, Ma J. A prospective study of polyunsaturated fatty acid levels in blood and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2007; 16(7): 1364–70.
Wang X, Lin H, Gu Y. Multiple roles of dihomo-gamma-linolenic acid against proliferation diseases. Lipids Health Dis 2012; 11: 25.