Da li postoji razlika u izloženosti ftalatima između odraslih osoba sa metaboličkim poremećajima i zdravih osoba?
Sažetak
Uvod/Cilj. Ftalati predstavljaju grupu jedinjenja za koje je poznato da imaju štetan uticaj na endokrini system, a nalaze se u različitim potrošačkim proizvodima. Hronična ekspozicija ftalatima dovodi se u vezu sa nastankom mnogobrojnih oboljenja. Cilj rada bio je da se utvrdi zastupljenost ftalatnih metabolita u uzorcima urina odraslih osoba u Vojvodini, Srbija, kao i da se utvrdi prevalenca ftalatnih metabolita kod zdravih ispitanika i onih sa metaboličkim poremećajima kao što su gojaznost i novootkriveni dijabetes melitus tip 2 (T2DM). Metode. Za ispitivanje je korišćen prvi jutarnji uzorak urina 308 ispitanika koji je analiziran na prisustvo 10 ftalatnih metabolita: mono-etil ftalata (MEP), mono-2-etilheksil ftalata (MEHP), mono-n-butil ftalata (MBP), mono-izo-amil-ftalata (MiAP), mono-n-amil ftalata (MnAP), mono-cikloheksil ftalata (MCHP), mono-benzil ftalata (MBzP), mono-n-oktil ftalata (MOP), mono-n-propil ftalata (MPP) i mono-metil ftalata (MMP). Rezultati. Kod 50,32% ispitivane populacije u uzorku urina detektovan je najmanje jedan ftalatni metabolit. Najzastupljeniji ftalatni metaboliti bili su MEP i MEHP. Među ispitanicima pozitivnim na prisustvo ftalatnih metabolita, 38,3% ispitanika imalo je detektovan jedan,
10,7% imalo je dva, a 1,3% ispitanika imalo je prisutna 3 ftalatna metabolita u uzorku jutarnjeg urina. Utvrđeno je postojanje značajne razlike (p < 0,05) između grupa u prisustvu MEP i MMP ftalatnih metabolita, kao i granične značajnosti (p < 0,1) između grupa u prisustvu MEHP i MHCP ftalatnih metabolita. Zaključak. U populaciji Vojvodine, i zdrave osobe i one sa metaboličkim poremećajima, kao što su gojaznost i novootkriveni T2DM, dominatno su izložene di-etil ftalatu i di-2-etilheksil ftalatu, s obzirom na to da su najzastupljeniji ftalatni metaboliti bili MEP i MEHP. Neophodna su dalja istraživanja koja će omogućiti bolji uvid u štetan uticaj ftalata na zdravlje.
Reference
Halden RU. Plastics and health risks. Annu Rev Public Health 2010; 31: 179‒94.
Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: toxi-cology and exposure. Int J Hyg Environ Health 2007; 210(5): 623‒34.
Wittassek M, Angerer J. Phthalates: metabolism and exposure. Int J Androl 2008; 31(2): 131‒8.
Katsikantami I, Sifakis S, Tzatzarakis MN, Vakonaki E, Kalantzi OI, Tsatsakis AM, et al. A global assessment of phthalates burden and related links to health effects. Environ Int 2016; 97: 212‒36.
Hatch EE, Nelson JW, Stahlhut RW, Webster TF. Association of endocrine disruptors and obesity: perspectives from epidemio-logical studies. Int J Androl 2010; 33(2): 324‒32.
Grimaldi M, Boulahtouf A, Delfosse V, Thouennon E, Bourguet W, Balaguer P. Reporter Cell Lines for the Characterization of the Interactions between Human Nuclear Receptors and Endo-crine Disruptors. Front Endocrinol (Lausanne) 2015; 6: 62.
Milošević N, Milanović M, Sudji J, Bosić Živanović D, Stojanoski S, Vuković B, et al. Could phthalates exposure contribute to the development of metabolic syndrome and liver disease in hu-mans? Environ Sci Pollut Res Int 2020; 27(1): 772‒84.
Shoshtari-Yeganeh B, Zarean M, Mansourian M, Riahi R, Poursafa P, Teiri H, et al. Systematic review and meta-analysis on the association between phthalates exposure and insulin re-sistance. Environ Sci Pollut Res Int 2019; 26(10): 9435–42.
Martínez-Ibarra A, Martínez-Razo LD, Vázquez-Martínez ER, Martínez-Cruz N, Flores-Ramírez R, García-Gómez E, et al. Un-healthy Levels of Phthalates and Bisphenol A in Mexican Pregnant Women with Gestational Diabetes and Its Associa-tion to Altered Expression of miRNAs Involved with Meta-bolic Disease. Int J Mol Sci 2019; 20(13): 3343.
James-Todd TM, Huang T, Seely EW, Saxena AR. The associa-tion between phthalates and metabolic syndrome: The Na-tional Health and Nutrition Examination Survey 2001–2010. Environ Health Global Access Sci Sour 2016; 15: 52.
Milošević N, Milić N, Živanović Bosić D, Bajkin I, Perčić I, Abenova-li L, et al. Potential influence of the phthalates on normal liv-er function and cardiometabolic risk in males. Environ Monit Assess 2017; 190(1): 17.
Stojanoska MM, Milosevic N, Milic N, Abenavoli L. The influ-ence of phthalates and bisphenol A on the obesity develop-ment and glucose metabolism disorders. Endocrine 2017; 55(3): 666‒81.
Radke EG, Galizia A, Thayer KA, Cooper GS. Phthalate expo-sure and metabolic effects: a systematic review of the human epidemiological evidence. Environ Int 2019; 132: 104768.
Benjamin S, Masai E, Kamimura N, Takahashi K, Anderson RC, Faisal PA. Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. J Hazard Mater 2017; 340: 360‒83.
Baillie-Hamilton PF. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med 2002; 8(2): 185‒92.
Wittassek M, Wiesmüller GA, Koch HM, Eckard R, Dobler L, Helm D, et al. Internal phthalate exposure over the last two decades–A retrospective human biomonitoring study. Int J Hyg Environ Health 2007; 210(3‒4): 319‒33.
Genuis SJ, Beesoon S, Lobo RA, Birkholz D. Human elimination of phthalate compounds: blood, urine, and sweat (BUS) study. ScientificWorldJournal. 2012; 2012: 615068.
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee DH, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012; 33(3): 378‒455.
Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 2009; 30(4): 293‒342.
Zota AR, Calafat AM, Woodruff TJ. Temporal Trends in Phthalate Exposures: Findings from the National Health and Nutrition Examination Survey, 2001–2010. Environ Health Perspect 2014; 122(3): 235‒41.
Stahlhut RW, Wijngaarden E, Dye TD, Cook S, Swan SH. Con-centrations of Urinary Phthalate Metabolites Are Associated with Increased Waist Circumference and Insulin Resistance in Adult U.S. Males. Environ Health Perspect 2007; 115(6): 876‒82.
CDC (Centers for Disease Control and Prevention) Fourth National Report on Human Exposure to Environmental Chemicals, Updates Tables. 2011. Available from: http://www.cdc.gov/exposurereport/ [accessed 2019 No-vember 11].
Hoppin JA, Brock JW, Davis BJ, Baird DD. Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ Health Perspect 2002; 110(5): 515–8.
Blount BC, Silva MJ, Caudill SP, Needham LL, Pirkle JL, Sampson EJ, et al. Levels of seven urinary phthalate metabo-lites in a human reference population. Environ Health Per-spect 2000; 108(10): 979‒82.
Silva MJ, Barr DB, Reidy JA, Malek NA, Hodge CC, Caudill SP, et al. Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examina-tion Survey (NHANES) 1999–2000. Environ Health Per-spect 2004; 112(3): 331–8.
Puklová V, Janoš T, Sochorová L, Vavrouš A, Vrbík K, Fialová A, et al. Exposure to Mixed Phthalates in Czech Preschool and School Children. Arch Environ Contam Toxicol 2019; 77(4): 471‒9.
Frederiksen H, Jørgensen N, Andersson AM. Correlations be-tween phthalate metabolites in urine, serum, and seminal plasma from young Danish men determined by isotope dilu-tion liquid chromatography tandem mass spectrometry. J Anal Toxicol 2010; 34(7): 400‒10.
Ding Y, Liu Y, Fei F, Yang L, Mao G, Zhao T, et al. Study on the metabolism toxicity, susceptibility and mechanism of di-(2-ethylhexyl) phthalate on rat liver BRL cells with insulin re-sistance in vitro. Toxicology 2019; 422: 102‒20.