Uticaj različitih materijala koji oblažu hidroksiapatit koštanog nosača na uspeh regeneracije koštanih defekta kalvarije zeca: histomorfometrijska i histološka analiza
Sažetak
Uvod/Cilj. Materijali koji se u današnje vreme koriste za nadoknadu koštanog tkiva ne dovode do kompletne regeneracije, zbog čega se ispituju novi. Uprkos mnogobrojnim pokušajima da se poboljša regeneracija koštanog tkiva, još uvek nije pronađen materijal koji ispunjava sve kriterijume. Cilj rada bio je da se utvrdi uticaj poli(laktid-ko-glikolida) (PLGA) i polietilenimina (PEI), kao premaza za oblaganje hidroksiapatita (HAP), na regenerativni potencijal koštanog tkiva u defektu kalvarije zeca. Metode. Kod 19 zečeva „zrelog” skeleta načinjeni su defekti kalvarije dijametra 6 mm. Defekti su potom ispunjeni jednim od sledećih materijala: HAP obložen PLGA (HAP + PLGA), HAP obložen PEI (HAP + PEI) i goveđi HAP – Bio-Oss® (pozitivna kontrola). Prazni defekti su predstavljali negativnu kontrolu. Inflamacijska reakcija tkiva domaćina je ispitana histološkom analizom. Formiranje nove kosti je procenjivano histomorfometrijskom analizom. Analizirani su uzorci dobijeni 3, 6 i 9 nedelja nakon implantacije. Rezultati. Tri nedelje nakon implantacije, uočena je tendencija boljeg zarastanja u HAP + PLGA grupi, bez statistički značajne razlike između ispitivanih grupa (p > 0.05). Međutim, 6 i 9 nedelja nakon implantacije, primećeno je značajno formiranje koštanog tkiva u korist HAP + PLGA grupe (p < 0,05). Oblaganje HAP sa PLGA dovelo je do boljeg koštanog zarastanja u poređenju sa HAP+PEI i Bio-Oss®. Zaključak. U pogledu stimulisanja osteogeneze u rekonstruktivnoj hirurgiji kostiju, PLGA je pokazao veći potencijal prekrivanja defekta od PEI.
Reference
1. Sakkas A, Wilde F, Heufelder M, Winter K, Schramm A. Autogenous bone grafts in oral implantology-is it still a "gold standard"? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent 2017; 3(1): 23.
2. Howlader D, Vignesh U, Bhutia DP, Pandey R, Kumar S, Chandra T, et al. Hydroxyapatite collagen scaffold with autologous bone marrow aspirate for mandibular condylar reconstruction. J Craniomaxillofac Surg 2017; 45(9): 1566‒72.
3. Birkenfeld F, Sengebusch A, Völschow C, Möller B, Naujokat H, Wiltfang J. Scaffold implantation in the omentum majus of rabbits for new bone formation. J Craniomaxillofac Surg 2019; 47(8): 1274‒9.
4. Nezhurina EK, Karalkin PA, Komlev VS, Sviridova IK, Kirsanova VA, Akhmedova SA, et al. Physicochemical and osteoplastic characteristics of 3D printed bone grafts based on synthetic calcium phosphates and natural polymers. IOP Conf Ser Mater Sci Eng 2018; 347. doi:10.1088/1757-899X/347/1/012047.
5. Zimmerer RM, Jehn P, Kokemüller H, Abedian R, Lalk M, Tavassol F, et al. In vivo tissue engineered bone versus autologous bone: stability and structure. Int J Oral Maxillofac Surg 2017; 46(3): 385‒93.
6. Eweida A, Schulte M, Frisch O, Kneser U, Harhaus L. The impact of various scaffold components on vascularized bone constructs. J Craniomaxillofac Surg 2017; 45(6): 881‒90.
7. Kasuya S, Inui S, Kato-Kogoe N, Omori M, Yamamoto K, Inoue K, et al. Evaluation of Guided Bone Regeneration Using the Bone Substitute Bio-Oss®and a Collagen Membrane in a Rat Cranial Bone Defect Model. J Hard Tissue Biol 2018; 27(1): 79‒84.
8. Le BQ, Rai B, Hui Lim ZX, Tan TC, Lin T, Lin Lee JJ, et al. A polycaprolactone-β-tricalcium phosphate-heparan sulphate device for cranioplasty. J Craniomaxillofac Surg 2019; 47(2): 341‒8.
9. Aludden HC, Mordenfeld A, Hallman M, Dahlin C, Jensen T. Lateral ridge augmentation with Bio-Oss alone or Bio-Oss mixed with particulate autogenous bone graft: a systematic review. Int J Oral Maxillofac Surg 2017; 46: 1030‒8.
10. Shirmohammadi A, Roshangar L, Chitsazi MT, Pourabbas R, Faramarzie M, Rahmanpour N. Comparative Study on the Efficacy of Anorganic Bovine Bone (Bio-Oss) and Nanocrystalline Hydroxyapatite (Ostim) in Maxillary Sinus Floor Augmentation. Int Sch Res Notices 2014; 2014: 967091.
11. Jokanović V, Čolović B, Marković D, Petrović M, Jokanović M, Milosavljević P, et al. In Vivo Investigation of ALBO-OS Scaffold Based on Hydroxyapatite and PLGA. J Nanomater 2016; Doi: https://doi.org/10.1155/2016/3948768.
12. Jokanović V, Čolović B, Marković D, Petrović M, Soldatović I, Antonijević Dj, et al. Extraordinary biological properties of a new calcium hydroxyapatite/poly(lactide-co-glycolide)-based scaffold confirmed by in vivo investigation. Biomed Tech (Berl) 2017; 62(3): 295–306.
13. Qiao C, Zhang K, Jin H, Miao L, Shi C, Liu X, et al. Using poly(lactic-co-glycolic acid) microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo. Int J Nanomedicine 2013; 8: 2985‒95.
14. Chen XA, Zhang LJ, He ZJ, Wang WW, Xu B, Zhong Q, et al. Plasmid-encapsulated polyethylene glycol grafted polyethylenimine nanoparticles for gene delivery into rat mesenchymal stem cells. Int J Nanomedicine 2011; 6: 843‒53.
15. Tierney EG, Duffy GP, Hibbitts AJ, Cryan SA, O'Brien FJ. The development of non-viral gene-activated matrices for bone regeneration using polyethyleneimine (PEI) and collagen-based scaffolds. J Control Release 2012; 158(2): 304‒11.
16. Cholas R, Kunjalukkal Padmanabhan S, Gervaso F, Udayan G, Monaco G, et al. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix. Mater Sci Eng C Mater Biol Appl 2016; 63: 499‒505.
17. Khanam N, Mikoryak C, Draper RK, Balkus KJ Jr. Electrospun linear polyethyleneimine scaffolds for cell growth. Acta Biomaterialia 2007; 3(6): 1050‒9.
18. Al-Dosari MS, Gao X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS J 2009; 11(4): 671–81.
19. Kumar S, Raj S, Sarkar K, Chatterjee K. Engineering a multi-biofunctional composite using poly(ethylenimine) decorated graphene oxide for bone tissue regeneration. Nanoscale 2016; 8(12): 6820‒36.
20. Khorsand B, Nicholson N, Do AV, Femino JE, Martin JA, Petersen E, et al. Regeneration of bone using nanoplex delivery of FGF-2 and BMP-2 genes in diaphyseal long bone radial defects in a diabetic rabbit model. J Control Release 2017; 248: 53‒9.
21. Jang SJ, Kim SE, Han TS, Son JS, Kang SS, Choi SH. Bone Regeneration of Hydroxyapatite with Granular Form or Porous Scaffold in Canine Alveolar Sockets. In Vivo 2017; 31(3): 335–41.
22. Kubasiewicz-Ros P, Seeliger J, Kozak K, Jurczyszyn K, Gerber H, Dominiak M, et al. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats. Ann Anat 2017; 213: 83‒90.
23. Xing H, Cheng L, Lu M, Liu H, Lang L, Yang T, et al. A biodegradable poly(amido amine) based on the antimicrobial polymer polyhexamethylene biguanide for efficient and safe gene delivery. Colloids Surf B Biointerfaces 2019; 182: 110355.
24. Guo X, Ding L, Kanamori K, Nakanishi K, Yang H. Functionalization of hierarchically porous silica monoliths with polyethyleneimine (PEI) for CO2 adsorption. Moc Mes Mat 2017; 245: 51‒7.
25. Liu M, Zhang L, Zhao Q, Jiang X, Wu L, Hu Y. Lower-molecular-weight chitosan-treated polyethyleneimine: a practical strategy for gene delivery to mesenchymal stem cells. Cell Physiol Biochem 2018; 50(4): 1255‒69.
26. Kunath K, von Harpe A, Fischer D, Kissel T. Galactose-PEI-DNA complexes for targeted gene delivery: degree of substitution affects complex size and transfection efficiency J Control Release 2003; 88(1): 159‒72.
27. Fischer D, Bieber T, Li Y, Elsasser HP, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res 1999; 16(8): 1273‒9.
28. Tachi K, Takami M, Sato H, Mochizuki A, Zhao B, Miyamoto Y, et al. Enhancement of bone morphogenetic protein-2-induced ectopic bone formation by transforming growth factor-beta1 2011. Tissue Eng Part A 2011; 17(5‒6): 597‒606.
29. Tang W, Lin D, Yu Y, Niu H, Guo H, Yuan Y, Liu C. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Acta Biomater 2016; 32: 309‒23.
30. Kharkova NV, Reshetov IV, Zelianin AS, Philippov VV, Sergeeva NS, Sviridova IK, et al. Three-dimensional TCP scaffolds enriched with Erythropoietin for stimulation of vascularization and bone formation. Electron J Gen Med 2016; 16(2): em115.