Analiza strukturnih i vaskularnih promena optičkog diska i makule u različitim stadijumima primarnog glaukoma otvorenog ugla
Sažetak
Uvod/Cilj. U ranoj fazi bolesti, bolesnici sa glaukomom otvorenog ugla ne moraju imati simptome. Cilj rada je bio da se utvrde strukturne i vaskularne promene optičkog diska (OD) i makule u zdravim očima i očima kod bolesnika sa primarnim glaukomom otvorenog ugla (PGOU), koje su registrovane optičkom koherentnom tomografijom (OKT) i optičkom koherentnom tomografskom angiografijom (OKTA), kao i korelacija između OKT i OKTA parametara i njihova povezanost sa prisustvom PGOU. Metode. Ukupno je analizirano 196 očiju podeljenih u četiri grupe: 48 zdravih očiju, 51 sa blagim glaukomom, 50 sa umerenim glaukomom i 47 očiju sa uznapredovalim glaukomom. Svi ispitanici pregledani su standardnim oftalmološkim pregledom. Pomoću OKT merena je debljina prosečnog, gornjeg i donjeg sloja nervnih vlakana mrežnjače (SNVM) i ganglijskog ćelijskog kompleksa (GĆK) makule, a pomoću OKTA analizirala je gustina kapilarnih krvnih sudova (GKS) u OD, fovealna avaskularna zona (FAZ) i gustina krvnih sudova (GS) makule u površinskoj (P) i dubokoj (D) retinalnoj vaskularnoj mreži. Rezultati. Bolesnici sa PGOU imali su smanjenu oštrinu vida i smanjenu debljinu rožnjače, povišeni očni pritisak (OP) kao i povećani cup/disc (C/D) odnos. Rezultati OKT pokazali su da je prosečna debljina SNVM, kao i debljina GĆK smanjena kod bolesnika sa PGOU, posebno u kasnoj fazi bolesti. Analizom OKTA utvrđeno je da se vrednosti GKS u OD takođe smanjuju sa napredovanjem PGOU, pokazujući najnižu vrednost kod bolesnika sa uznapredovalim glaukomom. Isto je zapaženo putem OKTA pregleda makule i praćenjem gustine krvnih sudova oko FAZ i vrednosti GS makule. Upoređivanjem strukturnih i vaskularnih promena, utvrđena je značajna pozitivna korelacija između debljine SNVM i GKS unutar OD, kao i GKS i GS makule u P retinalnoj vaskularnoj mreži. Zaključak. Primena OKT i OKTA omogućuje neinvazivnu kvantifikaciju strukturnih i vaskularnih promena u OD i makularnom predelu i precizno razlikovanje zdravih očiju od očiju sa PGOU, pokazujući povezanost sa prisustvom i progresijom glaukoma.
Reference
Lommatzsch C, Rothaus K, Koch JM, Heinz C, Grisanti S. Vessel density in OCT angiography permits differentiation between normal and glaucomatous optic nerve heads. Int J Ophthalmol 2018; 11(5): 835‒43.
Van Melkebeke L, Barbosa-Breda J, Huygens M, Stalmans I. Op-tical Coherence Tomography Angiography in Glaucoma: A Review. Ophthalmic Res 2018; 60(3): 139–51.
Lee EJ, Lee KM, Lee SH, Kim T-W. OCT Angiography of the Peripapillary Retina in Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci 2016; 57(14): 6265‒70.
Kawasaki R, Wang JJ, Rochtchina E, Lee AJ, Wong TY, Mitchell P. Retinal Vessel Caliber Is Associated with the 10-year Inci-dence of Glaucoma. Ophthalmology 2013; 120(1): 84–90.
De Leon JM, Cheung CY, Wong T-Y, Li X, Hamzah H, Aung T, et al. Retinal vascular caliber between eyes with asymmetric glaucoma. Graefes Arch Clin Exp Ophthalmol 2015; 253(4): 583–9.
Chan KKW, Tang F, Tham CCY, Young AL, Cheung CY. Reti-nal vasculature in glaucoma: a review. BMJ Open Ophthalmol 2017; 1(1): e000032.
Holló G. Optical Coherence Tomography Angiography in Glaucoma. Turk J Ophthalmol 2018; 48(4): 196–201.
Akagi T, Zangwill LM, Shoji T, Suh MH, Saunders LJ, Yarmo-hammadi A, et al. Optic disc microvasculature dropout in pri-mary open-angle glaucoma measured with optical coherence tomography angiography. PLoS One 2018; 13(8): e0201729.
Takusagawa HL, Liu L, Ma KN, Jia Y, Gao SS, Zhang M, et al. Projection-Resolved Optical Coherence Tomography Angi-ography of Macular Retinal Circulation in Glaucoma. Oph-thalmology 2017; 124(11): 1589‒99.
Yu J, Gu R, Zong Y, Xu H, Wang X, Sun X, et al. Relationship Between Retinal Perfusion and Retinal Thickness in Healthy Subjects: An Optical Coherence Tomography Angiography Study. Invest Ophthalmol Vis Sci 2016; 57(9): OCT204-10.
Brusini P. OCT Glaucoma Staging System: a new method for retinal nerve fiber layer damage classification using spectral-domain OCT. Eye (Lond) 2018; 32(1): 113–9.
Chen CL, Zhang A, Bojikian KD, Wen JC, Zhang Q, Xin C, et al. Peripapillary Retinal Nerve Fiber Layer Vascular Microcircu-lation in Glaucoma Using Optical Coherence Tomography–Based Microangiography. Invest Ophthalmol Vis Sci 2016; 57(9): OCT475-85.
Fechtner RD, Weinreb RN. Mechanisms of optic nerve damage in primary open angle glaucoma. Surv Ophthalmol 1994; 39(1): 23–42.
Bechmann M, Thiel MJ, Roesen B, Ullrich S, Ulbig MW, Ludwig K. Central corneal thickness determined with optical coher-ence tomography in various types of glaucoma. Br J Ophthal-mol 2000; 84(11): 1233‒7.
Dong ZM, Wollstein G, Schuman JS. Clinical Utility of Optical Coherence Tomography in Glaucoma. Invest Ophthalmol Vis Sci 2016; 57(9): OCT556‒67.
Moghimi S, Bowd C, Zangwill LM, Penteado RC, Hasenstab K, Hou H. Measurement Floors and Dynamic Ranges of OCT and OCT Angiography in Glaucoma. Ophthalmology 2019; 126(7): 980‒8.
Niles PI, Greenfield DS, Sehi M, Bhardwaj N, Iverson SM, Chung YS. Advanced Imaging in Glaucoma Study Group. Detection of progressive macular thickness loss using optical coherence tomography in glaucoma suspect and glaucomatous eyes. Eye (Lond) 2012; 26(7): 983‒91.
Miki A, Medeiros FA, Weinreb RN, Jain S, He F, Sharpsten L, et al. Rates of retinal nerve fiber layer thinning in glaucoma sus-pect eyes. Ophthalmology 2014; 121(7): 1350‒8.
Le PV, Tan O, Chopra V, Francis BA, Ragab O, Varma R, et al. Regional correlation among ganglion cell complex, nerve fiber layer, and visual field loss in glaucoma. Invest Ophthalmol Vis Sci 2013; 54(6): 4287‒95.
An G, Omodaka K, Hashimoto K, Tsuda S, Shiga Y, Takada N, et al. Glaucoma Diagnosis with Machine Learning Based on Op-tical Coherence Tomography and Color Fundus Images. J Healthc Eng 2019; 2019: 4061313.
Shin JW, Lee J, Kwon J, Choi J, Kook MS. Regional vascular den-sity-visual field sensitivity relationship in glaucoma according to disease severity. Br J Ophthalmol 2017; 101(12): 1666–72.
Rao HL, Kadambi SV, Weinreb RN, Puttaiah NK, Pradhan ZS, Rao DA, et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br J Oph-thalmol 2017; 101(8): 1066–70.
Suh MH, Zangwill LM, Manalastas PI, Belghith A, Yarmoham-madi A, Medeiros FA, et al. Optical coherence tomography an-giography vessel density in glaucomatous eyes with focal lami-na cribrosa defects. Ophthalmology 2016; 123(11): 2309–17.
Hou TY, Kuang TM, Ko YC, Chang YF, Liu CJ, Chen MJ. Optic Disc and Macular Vessel Density Measured by Optical Coher-ence Tomography Angiography in Open-Angle and Angle-Closure Glaucoma. Sci Rep 2020; 10(1): 5608.
Hou H, Moghimi S, Proudfoot JA, Ghahari E, Penteado RC, Bowd C, et al. Ganglion Cell Complex Thickness and Macular Vessel Density Loss in Primary Open-Angle Glaucoma. Ophthalmol-ogy 2020; 127(8): 1043‒52.
Shoji T, Zangwill LM, Akagi T, Saunders LJ, Yarmohammadi A, Manalastas PI, et al. Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. Am J Ophthalmol 2017; 182: 107‒17.
Chen CL, Bojikian KD, Gupta D, Wen JC, Zhang Q, Xin , et al. Optic nerve head perfusion in normal eyes and eyes with glau-coma using optical coherence tomography-based microangi-ography. Quant Imaging Med Surg 2016; 6(2): 125‒33.
Tao A, Liang Y, Chen J, Hu H, Huang Q, Zheng J, et al Struc-ture-function correlation of localized visual field defects and macular microvascular damage in primary open-angle glauco-ma. Microvasc Res 2020; 130: 104005.