Da li je insulin neophodan za borbu protiv oksidativnog stresa u dijabetesu melitusu tip 2 – pilot studija
Sažetak
Uvod/Cilj. Kod bolesnika sa dijabetesom melitusom tipa 2 (T2DM), hipergikemija podstiče progresiju mikro/makrovaskularnih komplikacija. Dodatno, sve poznate komplikacije u T2DM povezane su sa oksidativnim stresom koji nastaje različitim metaboličkim procesima. Cilj rada bio je da se proceni kvalitet glikoregulacije i stepen oksidativnog stresa kod bolesnika sa T2DM u zavisnosti od primenjenog terapijskog protokola i njihova povezanost sa kliničkim podacima i ključnim biohemijskim parametrima važnim za razvoj dijabetesnih komplikacija. Metode. Svi ispitivani bolesnici bili su podeljeni u dve grupe: grupa bolesnika lečenih samo oralnim antidijabetičnim lekovima (OAD) i grupa lečenih OAD i insulinom (OADINS). Praćeni su tiobarbiturna kiselina-reagujuće supstance (TBARS), totalni sulfhidrili (TSH), aktivnost superoksid dizmutaze (SOD), ukupni nitriti (NOx), vaskularni endotelni faktor rasta (VEGF), aktivnost matriksne metaloproteinaze 9 (MMP9), lipidni profil i rutinski biohemijski parametri. Svim ispitanicima su analizirane demografske karakteristike, detaljna medicinska istorija, pušačke navike, a izračunat im je i indeks telesne mase (BMI). Rezultati. Svi bolesnici su imali loše regulisanu glikoregulaciju i bili su dislipemični. Pokazana je smanjena aktivnost SOD i povećana lipidna peroksidacija u OAD grupi u poređenju sa OADINS grupom. Loša glikoregulacija u grupama OAD i OADINS nije bila povezana sa rezultatima oksidativnog stanja. I u OAD i u OADINS grupi, koncentracije VEGF i MMP9 bile su značajno više u odnosu na kontrole. Zaključak. Bolji antioksidativni odgovor registrovan kroz normalizovanu koncentraciju TBARS, očuvan TSH i SOD u granicama normalnih vrednosti kod T2DM bolesnika lečenih OADINS u odnosu na bolesnike lečene samo OAD, upućuju na potrebu za pažljivijim razmatranjem ranijeg uvođenja insulina u terapiju obolelih od T2DM, kako bi se sprečio razvoj komplikacija.
Reference
Hodish I. For debate; pharmacological priorities in advanced type 2 diabetes. J Diabetes Complications. 2020; 34(5): 107510.
Brownlee M. Biochemistry and molecular cell biology of diabet-ic complications. Nature 2001; 414(6865): 813‒20.
Kautzky-Willer A, Harreiter J, Pacini G. Sex and gender differ-ences in risk, pathophysiology and complications of type 2 di-abetes mellitus. Endocr Rev 2016; 37(3): 278‒316.
Jun JE, Jin SM, Baek J, Oh S, Hur KY, Lee MS, et al. The asso-ciation between glycemic variability and diabetic cardiovascu-lar autonomic neuropathy in patients with type 2 diabetes. Cardiovasc Diabetol 2015; 14(1): 70.
Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res 2017; 120(4): 713‒35.
Škrha J, Šoupal J, Škrha J Jr, Prázný M. Glucose variability, HbA1c and microvascular complications. Rev Endocr Metab Disord 2016; 17(1): 103‒10.
Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol 2019; 11(3): 45‒63.
Schnell O, Crocker JB, Weng J. Impact of HbA1c Testing at Point of Care on Diabetes Management. J Diabetes Sci Tech-nol 2017; 11(3): 611‒7.
Shen GX. Oxidative stress and diabetic cardiovascular disor-ders: roles of mitochondria and NADPH oxidase. Can J Phys-iol Pharmacol 2010; 88(3): 241‒8.
Klein T, Bischoff R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids 2011; 41(2): 271‒90.
Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007; 8(3): 221‒33.
Aiello LP, Wong JS. Role of vascular endothelial growth factor in diabetic vascular complications. Kidney Int Suppl 2000; 77: S113‒9.
Pugliese G, Penno G, Natali A, Barutta F, Di Paolo S, Reboldi G, et al. Diabetic kidney disease: New clinical and therapeutic is-sues. Joint position statement of the Italian Diabetes Society and the Italian Society of Nephrology on “The natural history of diabetic kidney disease and treatment of hyperglycemia in patients with type 2 diabetes and impaired renal function”. J Nephrol 2020; 33(1): 9‒35.
Lee MY, Hsiao PJ, Huang YT, Huang JC, Hsu WH, Chen SC, et al. Greater HbA1c variability is associated with increased car-diovascular events in type 2 diabetes patients with preserved renal function, but not in moderate to advanced chronic kid-ney disease. PLoS One 2017; 12(6): e0178319.
Ellman G. Tissue sulfhydryl groups. Arch Biochem Biophys 1959; 82(1): 70‒7.
Girotti MJ, Khan N, McLellan BA. Early measurement of sys-temic lipid peroxidation products in the plasma of major blunt trauma patients. J Trauma 1991; 31(1): 32‒5.
Sun M, Zigman S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine autoxidation. Anal Biochem 1978; 90(1): 81‒9.
Navarro-Gonzálvez JA, García-Benayas C, Arenas J. Semiauto-mated measurement of nitrate in biological fluids. Clin Chem 1998; 44(3): 679‒81.
Giacco F, Brownlee M. Oxidative stress and diabetic complica-tions. Circ Res 2010; 107(9): 1058‒70.
Ito F, Sono Y, Ito T. Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxida-tive Stress in Diabetes, Atherosclerosis, and Chronic Inflam-mation. Antioxidants (Basel) 2019; 8(3): 72.
Vigersky R, Shrivastav M. Role of continuous glucose monitor-ing for type 2 in diabetes management and research. J Diabetes Complications 2017; 31(1): 280‒7.
Verma MK, Singh SP, Alam R, Verma P. Comparative Study on MDA, SOD and HbA1c Levels in Patients of Type 2 Dia-betes Mellitus with Retinopathy and Without Retinopathy. Int J Pharm Sci Res 2016; 7(10): 4184‒90.
Song Y, Ding W, Bei Y, Xiao Y, Tong H, Wang L, et al. Insulin is a potential antioxidant for diabetes-associated cognitive de-cline via regulating Nrf2 dependent antioxidant enzymes. Bi-omed Pharmacother 2018; 104: 474‒84.
Su J, Zhao L, Zhang X, Cai H, Huang H, Xu F, et al. HbA1c variability and diabetic peripheral neuropathy in type 2 diabet-ic patients. Cardiovasc Diabetol 2018; 17(1): 47.
Kim JM, Kim SS. Management of Hyperglycemia in Type 2 Di-abetes: A Summary of New Consensus Report from the Amer-ican Diabetes Association and the European Association for the Study of Diabetes in 2018. J Korean Diabetes 2019; 20(1): 6‒9. (Korean)
Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obe-sity and metabolic disease. J Clin Invest 2017; 127(1): 1‒4.
Rawshani A, Rawshani A, Franzén S, Sattar N, Eliasson B, Svens-son AM, et al. Risk factors, mortality, and cardiovascular out-comes in patients with type 2 diabetes. N Engl J Med 2018; 379(7): 633‒44.
Jaimes EA, DeMaster EG, Tian RX, Raij L. Stable compounds of cigarette smoke induce endothelial superoxide anion pro-duction via NADPH oxidase activation. Arterioscler Thromb Vasc Biol 2004; 24(6): 1031‒6.
Steffen Y, Vuillaume G, Stolle K, Roewer K, Lietz M, Schueller J, et al. Cigarette smoke and LDL cooperate in reducing nitric oxide bioavailability in endothelial cells via effects on both eNOS and NADPH oxidase. Nitric Oxide 2012; 27(3): 176‒84.
Liu A, Wu Q, Guo J, Ares I, Rodríguez JL, Martínez-Larrañaga MR, et al. Statins: Adverse reactions, oxidative stress and metabolic interactions. Pharmacol Ther 2019; 195: 54‒84.
Dworacka M, Krzyżagórska E, Wesołowska A, Borowska M, Is-kakova S, Dworacki G. Statins in low doses reduce VEGF and bFGF serum levels in patients with type 2 diabetes mellitus. Pharmacology 2014; 93(1‒2): 32‒8.
Husain K, Hernandez W, Ansari RA, Ferder L. Inflammation, oxidative stress and renin angiotensin system in atherosclero-sis. World J Biol Chem 2015; 6(3): 209‒17.
Chalupsky K, Cai H. Endothelial dihydrofolate reductase: criti-cal for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 2005; 102(25): 9056‒61.
Nakamura K, Murakami M, Miura D, Yunoki K, Enko K, Tanaka M, et al. Beta-blockers and oxidative stress in patients with heart failure. Pharmaceuticals (Basel) 2011; 4(8): 1088‒100.
Perez-Reyes E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 2003; 83(1): 117‒61.
Preston Mason R. Pleiotropic effects of calcium channel block-ers. Curr Hypertens Rep. 2012; 14(4): 293‒303.
Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative Stress in Atherosclerosis. Curr Atheroscler Rep 2017; 19(11): 42.
Tousoulis D, Papageorgiou N, Androulakis E, Siasos G, Latsios G, Tentolouris K, et al. Diabetes mellitus-associated vascular impairment: novel circulating biomarkers and therapeutic approaches. J Am Coll Cardiol 2013; 62(8): 667‒76.
Domingueti CP, Dusse LM, Carvalho M, de Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: The linkage be-tween oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complications 2016; 30(4): 738‒45.