Značaj simulacije četvorodimenzionalnom kompjuterizovanom tomografijom u radioterapiji lokalno uznapredovalog karcinoma pluća: uticaj na smanjenje planiranog ciljnog volumena

  • Slavica Marić International Medical Centers Banja Luka – Affidea (IMC/Affidea), Banja Luka, Republic of Srpska, Bosnia and Herzegovina
  • Petar Janjić International Medical Centers Banja Luka – Affidea (IMC/Affidea), Banja Luka, Republic of Srpska, Bosnia and Herzegovina
  • Borut Bosančić University of Banja Luka, Faculty of Agriculture, Department of Biometrics, Institute of Genetic Resources, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
  • Milan Mijailović University of Kragujevac, Faculty of Medical Sciences, Department of Radiology, Kragujevac, Serbia
  • Snežana Lukić University of Kragujevac, Faculty of Medical Sciences, Department of Radiology, Kragujevac, Serbia
Ključne reči: adenokarcinom;, karcinom, planocelularni;, tomografija, kompjuterizovana, četvorodimenzionalna;, pluća, neoplazme;, radioterapija.

Sažetak


 

Uvod/Cilj. Simulacija putem četvorodimenzionalne kompjuterizovane tomografije (4D KT) je važan segment savremene radioterapije karcinoma pluća. Konvencionalna trodimenzionalna (3D) simulacija uz slobodno disanje (free-breathing – FB) je statična sa limitiranim informacijama o respiratornim pokretima koji mogu produkovati nepreciznosti u procesu delineacije i planiranju radioterapije. Cilj ove studije bio je da se uradi poređenje ciljnih volumena definisanih na 3D KT simulaciji vs. 4D KT simulaciji i uticaja na planirani ciljni volumen (PCV), imajući u vidu da je


smanjeni PCV uz preciznu pokrivenost primarnog tumora od izuzetne važnosti. Urađena je kvantifikacija pokreta primarnog tumora (gross tumor volume – GTV) tokom 4D KT simulacije duž tri ose: Z-superoinferiornu (SI), X-mediolateralnu (ML), Y-anteroposteriornu (AP). Metode. U ovoj retrospektivnoj studiji evaluirano je 20 pacijenata sa dijagnozom lokalno uznapredovalog karcinoma pluća i indikacijom za radikalnu radioterapiju. Prema institucionalnom protokolu uradjena je 3D KT i 4D KT simulacija FB za svakog pacijenta. Zatim je urađeno volumetrijsko poređenje volumena definisanih putem 3D KT vs. 4D KT: GTV 3D vs. unutrašnji GTV (UGTV) 4D i PCV 3D vs. unutrašnji PCV (UPCV) 4D. Poređenje pomeranja GTV u fazi FB (GTV FB), fazi 0 (GTV 0), fazi 50 (GTV 50) i fazi projekcije maksimalnog intenziteta, maximum intensity projection (GTV MIP) urađeno je tako da je GTV FB uzet kao bazična vrednost. Evaluacija je urađena za sve tri ose. Rezultati. Izmerene vrednosti volumena GTV 3D vs. UGTV 4D bile su 63,15 cm3 vs. 85,51 cm3 (p < 0,001). UGTV 4D je bio značajno veći u odnosu na GTV 3D (p < 0,001). Srednja vrednost ekvivalentnog sfernog dijametra (ESD) za PCV 3D vs. UPCV 4D bila je 8,44 cm vs. 7,82 cm (p < 0,001), srednja vrednost volumena PCV 3D vs. UPCV 4D bila je 352,70 cm3 vs. 272,78 cm3 (p < 0,001). PCV 3D je bio značajno veći u poređenju UPCV 4D (p < 0,001). Utvrđena je i statistički značajna razlika (p < 0,05) u odstupanju GTV u odnosu na Z osovinu između gornjeg i donjeg lobusa. Zaključak. Delineacija bazirana na 4D KT simulaciji daje mogućnost redukcije PCV u poređenju sa 3D simulacijom i čini važan preduslov za visoko kvalitetan i precizan radioterapijski tretman.

Biografija autora

Slavica Marić, International Medical Centers Banja Luka – Affidea (IMC/Affidea), Banja Luka, Republic of Srpska, Bosnia and Herzegovina

radioterapija, radijacioni onkolog

Reference

1.      Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71(3): 209‒49.

2.      Ettinger DS, Wood DE, Aisner LD, Akerley W, Bauman RJ, Bharat A, et al. NCCN guidelines Insights: Non-small cell lung cancer version 2.2021. J Natl Compr Canc Netw 2021; 19(3): 254‒66.

3.      International Association for the Study of Lung. Staging Manual in Thoracic Oncology. 2nd ed. North Fort Myers, FL: IASLC; 2016.

4.      Park K, Vansteenkiste J, Lee HK,Peters S, Toshino J, Douillard JY. Pan - Asian adapted ESMO Clinical Practical Guidelines for the management of patients with locally advanced unresectable non-small lung cancer: a KSMO-ESMO initiative endorsed by CSCO, ISMPO, JSMO, MOS, SSO and TOSS. Ann Oncol 2020; 31(2): 191‒201.

5.      Fromm S, Rottenfusser, Berger D, Pirker R, Pötter R, Pokrajac B. 3D conformal radiotherapy for inoperable non-small cell lung cancer- a single center experience. Radiol Oncol 2007; 41(3): 133‒43.

6.      Dhont J, Harden SV, Chee LYS, Aitken K, Hanna GG, Bertholet J. Image-guided Radiotherapy to Manage Respiratory Motion: Lung and Liver. Clin Oncol (R Coll Radiol) 2020; 32(12): 792‒804.

7.      Boyle J, Ackerson B, Gu L, Kelsey CR. Dosimetric advantages of intensity modulated radiation therapy in locally advanced lung cancer. Adv Radiat Oncol 2017; 2(1): 6‒11.

8.      Steiner E, Shieh CC, Caillet V, Booth J, O'Brien R, Briggs A, et al. Both four-dimensional computed tomography and four-dimensional cone beam computed tomography under-predict lung target motion during radiotherapy. Radiother Oncol 2019; 135: 65‒73.

9.      Ono T, Nakamura M, Hirose Y, Kitsuda K, Ono Y, Ishigaki T, et al. Estimation of lung tumor position from multiple anatomical features on 4D-CT using multiple regression analysis. J Appl Clin Med Phys 2017; 18(5): 36‒42. 

10.   Ren XC, Liu YE, Li J, Lin Q. Progress in image-guided radiotherapy for the treatment of non-small cell lung cancer. World J Radiol 2019; 11(3): 46‒54.

11.   Cusumano D, Dhont J, Boldrini L, Chiloiro G, Teodoli S, Massacessi M, et al. Predicting tumor motion during the whole radiotherapy treatment: a systematic approach for thoracic and abdominal lesions based on real time MR. Radiother Oncol 2018; 129(3): 456‒62.

12.   Chavaudra J, Bridier A. Definition of volumes in external radiotherapy: ICRU reports 50 and 62. Cancer Radiother 2001; 5(5): 472‒8. (French)

13.   International Commission on Radiation Units and Measurements. Prescribing, recording and reporting photon beam intensity modulated radiation therapy. ICRU report 83. Bethesda, MD: ICRU; 2010.

14.   Giraud P, Antoine M, Larrouy A, Milleron B, Callard P, De Rycke Y, et al. Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. Int J Radiat Oncol Biol Phys 2000; 48(4): 1015‒24.

15.   Kong FM, Ritter T, Quint DJ, Senan S, Gaspar LE, Komaki RU, et al. Consideration of dose limits for organs at risk of thoracic radiotherapy: atlas for lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Int J Radiat Oncol Biol Phys 2011; 81(5): 1442‒57. 

16.   Mercieca S, Belderbos JSA, van Herk M. Challenges in the target volume definition of lung cancer radiotherapy. Transl Lung Cancer Res 2021; 10(4): 1983‒98.

17.   Nestle U, Le Pechoux C, De Ruysscher D. Evolving target volume concepts in locally advanced non-small cell lung cancer. Transl Lung Cancer Res 2021; 10(4): 1999‒2010.

18.   Wilke L, Andratschke N, Blanck O, Brunner TB, Combs SE, Grosu AL, et al. ICRU report on prescribing, recording and reporting of stereotactic treatments with small beam photons:Statements from DEGRO/DGMP working group stereotactic radiotherapy and radiosurgery. Strahlenter Onkol 2019; 195(3): 193‒8.

19.   Ahmed N, Venkataraman S, Johnson K, Sutherland K, Loewen SK. Does Motion Assessment With 4-Dimensional Computed Tomographic Imaging for Non-Small Cell Lung Cancer Radiotherapy Improve Target Volume Coverage? Clin Med Insights Oncol 2017; 11: 1179554917698461.

20.   Siow T, Lim S. Correlating lung tumor location and motion with respiration using 4DCT scan. J  Radiother Pract 2021; 20(1): 17‒21.

21.   Molitoris JK, Diwanji T, Snider JW 3rd, Mossahebi S, Samanta S, Badiyan SN, et al. Advances in the use of motion management and image guidance in radiation therapy treatment for lung cancer. J Thorac Dis 2018; 10(Suppl 21): S2437‒50.

22.   Diwanji TP, Mohindra P, Vyfhuis M, Snider JW 3rd, Kalavagunta C, Mossahebi S, et al. Advances in radiotherapy techniques and delivery for non-small cell lung cancer: benefits of intensity-modulated radiation therapy, proton therapy, and stereotactic body radiation therapy. Transl Lung Cancer Res 2017; 6(2): 131‒47.

23.   Chun SG, Hu C, Choy H, Komaki RU, Timmerman RD, Schild SE, et al. Impact of Intensity-Modulated Radiation Therapy Technique for Locally Advanced Non-Small-Cell Lung Cancer: A Secondary Analysis of the NRG Oncology RTOG 0617 Randomized Clinical Trial. J Clin Oncol 2017; 35(1): 56‒62.

24.   Ueyama T, Arimura T, Takumi K Nakamura F, Higashi R, Ito S, et al.. Risk factors for radiation pneumonitis after stereotactic radiation therapy for lung tumors: clinical usefulness of the planning target volume to total lung volume ratio. Br J Radiol 2018; 91(1086): 20170453.

25.   Meng Y, Yang H, Wang W, Tang X, Jiang C, Shen Y, et al. Excluding PTV from lung volume may better predict radiation pneumonitis for intensity modulated radiation therapy in lung cancer patients. Radiat Oncol 2019: 14(7): doi.org/10.1186/s13014-018-120-x.

26.   Matsuo Y, Shibuya K, Nakamura M, Narabayashi M, Sakanaka K, Ueki N, et al.. Dose volume metrics associated with radiation pneumonitis after stereotactic body radiation therapy for lung cancer. Int J Radiat Oncol Biol Phys 2012; 83(4): e545‒9.

27.   Seppenwoolde Y, Shirato H, Kitamora K, Shimizu S, van Herk M, Lebesque JV, et al. Precise and real-time measurement of 3-D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 2002; 53(4): 822‒34

28.   Knybel L, Cvek J, Molenda L, Stieberova N, Feltl D. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume. Int J Radiat Oncol Biol Phys 2016; 96(4): 751‒8.

Objavljeno
2023/01/04
Rubrika
Originalni članak