Neurofeedback trening senzomotornog ritma i auditivna percepcija
Sažetak
Uvod/Cilj. U svakodnevnoj komunikaciji, ljudi su izloženi mnoštvu zvukova koje treba razvrstati i iz kojih treba izvući bitne informacije. Sposobnost osobe da se koncentriše na određene zvukove u bučnom okruženju, da selektivno i usredsređeno usmerava sluh je ključna za svakodnevno funkcionisanje i komunikaciju. Cilj studije bio je da se ispita efekat neurofeedback (NFB) treninga senzorimotornog ritma (SMR) (12-15 Hz) na auditivnu percepciju koji se meri rezultatima postignutim na Quick speech-in-noise (QuickSIN) testu, promenama amplituda i latenci komponenti auditivnih evociranih potencijala (AEP) N100, N200 i P300 tokom zadatka auditivne diskriminacije i promenama spektralne snage SMR talasa. Metode. U studiju je bilo uključeno 16 zdravih ispitanika uzrasta od 25 do 40 godina (8 muškog i 8 ženskog pola). Svaki ispitanik imao je 20 svakodnevnih SMR NFB treninga. Auditivne kognitivne funkcije i elektrofiziološke korelacije kognitivnih procesa snimane su 5 puta, i to pre primene NFB treninga, posle 5, 10, i 20 treninga i jedan mesec nakon poslednjeg treninga. Rezultati. Rezultati su pokazali statistički značajno smanjenje latenci N200 i P300 komponenti u regijama frontal midline (Fz), central midline (Cz) i parietal midline (Pz), bolje postignuće na QuickSIN testu kao i povećanje spektralne snage elektroencefalografije SMR ritma u Cz regiji kao rezultat NFB SMR treninga. Nije utvrđen statistički značajan efekat NFB treninga na N100, N200 i P300 amplitude u Fz, Cz i Pz regijama, niti na spektralnu snagu SMR talasa. Zaključak. Dobijeni rezultati ukazuju na potencijalni efekat SMR NFB treninga na poboljšanje procesa auditivne diskriminacije u smislu kraćih latenci komponenti AEP i boljeg postignuća na QuickSIN testu.
Reference
1. Alickovic E, Lunner T, Gustafsson F, Ljung L. A Tutorial on Au-ditory Attention Identification Methods. Front Neurosci 2019; 13: 153.
2. Bronkhorst AW. The Cocktail Party Phenomenon: A Review on Speech Intelligibility in Multiple-Talker Conditions. Acta Acus-tica united with Acustica. 2000; 86(1): 117–28.
3. Sterman MB. Basic concepts and clinical findings in the treat-ment of seizure disorders with EEG operant conditioning. Clin Electroencephalogr 2000; 31(1): 45‒55.
4. Marzbani H, Marateb HR, Mansourian M. Neurofeedback: A Comprehensive Review on System Design, Methodology and Clinical Applications. Basic Clin Neurosci 2016; 7(2): 143‒58.
5. Caria A, Sitaram R, Birbaumer N. Real-time fMRI: a tool for lo-cal brain regulation. Neuroscientist 2012; 18(5): 487‒501.
6. Vernon DJ. Can neurofeedback training enhance performance? An evaluation of the evidence with implications for future re-search. Appl Psychophysiol Biofeedback 2005; 30 (4): 347‒64.
7. Thompson M, Thompson L. The neurofeedback book. 2nd ed. Overland Park, Kansas: Association for Applied Psychophysi-ology and Biofeedback; 2003.
8. Vojnović M. QuickSIN Test Method for Hearing Loss Meas-urement. In: Jovičić ST, Sovilj M, editors. Speech and Language, Interdisciplinary research III. Belgrade: Institut za eksperi-mentalnu fonetiku i patologiju govora; 2011. p. 241‒58.
9. Duarte JL, Alvarenga Kde F, Banhara MR, Melo AD, Sás RM, Cos-ta Filho OA. P300-long-latency auditory evoked potential in normal hearing subjects: simultaneous recording value in Fz and Cz. Braz J Otorhinolaryngol 2009; 75(2): 231‒6.
10. Saeid S, Chambers JA. EEG Signal Processing. Centre of Digital Signal Processing, Cardiff University UK: John Wiley & Sons, Ltd; 2007.
11. Kober SE, Witte M, Stangl M, Väljamäe A, Neuper C, Wood G. Shutting down sensorimotor interference unblocks the net-works for stimulus processing: an SMR neurofeedback training study. Clin Neurophysiol 2015; 126: 82–95.
12. Reichert JL, Kober SE, Schweiger D, Grieshofer P, Neuper C, Wood G. Shutting Down Sensorimotor Interferences after Stroke: A Proof-of-Principle SMR Neurofeedback Study. Front Hum Neurosci 2016; 10: 348.
13. Rietdijk W, Franken I, Thurik R. Internal Consistency of Event-Related Potentials Associated with Cognitive Control: N2/P3 and ERN/Pe. PloS One 2014; 9(7): e102672.
14. Coles MGH, Rugg MD. Event-related brain potentials: an intro-duction. In: Rugg MD, Coles MGH, editors. Electrophysiology of mind: event-related brain potentials and cognition. Oxford: Oxford University Press; 1995. pp. 1–26.
15. Djurić S. Evoked potentials. Niš: Prosveta; 2002. (Serbian)
16. Vernon D, Egner T, Cooper N, Compton T, Neilands C, Sheri A, et al. The effect of training distinct neurofeedback protocols on aspects of cognitive performance. Int J Psychophysiol 2003; 47(1): 75‒85.
17. Egner T, Gruzelier JH. EEG biofeedback of low beta band components: frequency-specific effects on variables of atten-tion and event-related brain potentials. Clin Neurophysiol 2004; 115(1): 131‒9.
18. Hoedlmoser K, Pecherstorfer T, Gruber G, Anderer P, Doppelmayr M, Klimesch W, et al. Instrumental conditioning of human sen-sorimotor rhythm (12-15 Hz) and its impact on sleep as well as declarative learning. Sleep 2008; 31(10): 1401‒8.
19. Kober SE, Schweiger D, Witte M, Reichert JL, Grieshofer P, Neuper C, et al. Specific effects of EEG based neurofeedback training
on memory functions in post-stroke victims. J Neuroeng Re-habil 2015; 12: 107.
20. deBettencourt MT, Cohen JD, Lee RF, Norman KA, Turk-Browne NB. Closed-loop training of attention with real-time brain im-aging. Nat Neurosci 2015; 18(3): 470‒5.
21. Ros T, Moseley MJ, Bloom PA, Benjamin L, Parkinson LA, Gru-zelier JH. Optimizing microsurgical skills with EEG neu-rofeedback. BMC Neurosci 2009; 10: 87.
22. Morand-Beaulieu S, Perrault MA, Lavoie M. Test-Retest Reliability of Event-Related Potentials Across Three Tasks. J Psycho-physiol 2022; 36(2): 100‒17.
23. Perez AP, Ziliotto K, Pereira LD. Test-Retest of Long Latency Auditory Evoked Potentials (P300) with Pure Tone and Speech Stimuli. Int Arch Otorhinolaryngol 2017; 21(2): 134‒9.
24. Sandman CA, Patterson JV. The auditory event-related potential is a stable and reliable measure in elderly subjects over a 3 year period. Clin Neurophysiol 2000; 111(8): 1427‒37.
25. Walhovd KB, Fjell AM. One-year test-retest reliability of audito-ry ERPs in young and old adults. Int J Psychophysiol 2002; 46(1): 29‒40.
26. Engelbregt HJ, Keeser D, van Eijk L, Suiker EM, Eichhorn D, Karch S, et al. Short and long-term effects of sham-controlled pre-frontal EEG-neurofeedback training in healthy subjects. Clin Neurophysiol 2016; 127(4): 1931‒7.
27. Bussalb A, Congedo M, Barthélemy Q, Ojeda D, Acquaviva E, De-lorme R, et al. Clinical and Experimental Factors Influencing the Efficacy of Neurofeedback in ADHD: A Meta-Analysis. Front Psychiatry 2019; 10: 35.
28. Gadea M, Aliño M, Garijo E, Espert R, Salvador A. Testing the Benefits of Neurofeedback on Selective Attention Measured Through Dichotic Listening. Appl Psychophysiol Biofeedback 2016; 41(2): 157‒64.
29. Azizi A, Mir Drikvand F, Sepahvani MA. Comparison of the Ef-fect of Cognitive Rehabilitation and Neurofeedback on Sus-tained Attention Among Elementary School Students With Specific Learning Disorder: A Preliminary Randomized Con-trolled Clinical Trial. Basic Clin Neurosci 2020; 11(4): 465‒72.
30. Lee EJ, Jung CH. Additive effects of neurofeedback on the treatment of ADHD: A randomized controlled study. Asian J Psychiatr 2017; 25: 16‒21.
31. Baumeister S, Wolf I, Holz N, Boecker-Schlier R, Adamo N, Holt-mann M, et al. Neurofeedback Training Effects on Inhibitory Brain Activation in ADHD: A Matter of Learning? Neurosci-ence 2018; 378: 89‒99.
