Učestalost nesindromskih urođenih srčanih mana u Republici Srpskoj u periodu od 2015. do 2016. godine
Sažetak
Uvod/Cilj. Urođena srčana mana (USM) je najčešći tip urođene mane i jedan od vodećih uzroka umiranja odojčadi. Može biti izolovana ili deo mnogobrojnih sindroma. Učestalost izolovane USM u svetu iznosi između 70 i 120 na 10 000 živorođene dece. Cilj rada bio je da se utvrdi učestalost nesindromskih USM u Republici Srpskoj (RS), Bosna i Hercegovina i da se uporedi sa drugim državama. Metode. Korišćenjem podataka iz studije preseka, analizirani su slučajevi fetusa, živorođene i mrtvorođene dece sa USM u 2015. i 2016. godini u RS. Rezultati. Ukupna učestalost USM iznosila je 163,95 na 10 000 porođaja, a učestalost novorođenčadi sa USM 136,64 na 10 000 živorođenih novorođenčadi. Dijagnoza je postavljana prenatalno u 8,09% slučajeva. Najčešći tip anomalije bio je ventrikularni septalni defekt (45,63%), zatim atrijalni septalni defekt (31,40%), otvoreni duktus arteriozus (7,44%) i stenoza plućne valvule (5,18%). Utvrđena je značajna razlika u učestalosti USM među regijama i između majki različitog životnog doba. Zaključak. Učestalost USM u RS utvrđena u ovoj studiji značajno je veća od učestalosti USM utvrđene u drugim studijama i značajno se razlikuje među regijama. Ova studija pruža osnovne podatke koji bi se mogli koristiti za praćenje USM i promenu faktora rizika, kao i sprovođenje primarnih preventivnih mera.
Reference
1. Triedman JK, Newburger JW. Trends in Congenital Heart Disease: The Next Decade. Circulation 2016; 133(25): 2716–33.
2. Oster ME, Lee KA, Honein MA, Riehle-Colarusso T, Shin M, Correa A. Temporal trends in survival among infants with critical congenital heart defects. Pediatrics 2013; 131(5): e1502–8.
3. Ferencz C, Boughman JA, Neill CA, Brenner JI, Perry LW. Congenital cardiovascular malformations: Questions on Inheritance. Baltimore-Washington Infant Study Group. J Am Coll Cardiol 1989; 14(3): 756–63.
4. Hoffman JIE. The global burden of congenital heart disease. Cardiovasc J Afr 2013; 24(4): 141–5.
5. Van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 2011; 58(21): 2241–7.
6. Qu Y, Liu X, Zhuang J, Chen G, Mai J, Guo X, et al. Incidence of congenital heart disease: the 9-year experience of the Guangdong registry of congenital heart disease, China. PLoS One 2016; 11(7): e0159257.
7. EUROCAT. Cases and prevalence (per 10,000 births) for all full member registries from 2011 to 2015 [Internet]. 2015 [accessed on 2023 May 16]. Available from: https://eu-rd-platform.jrc.ec.europa.eu/eurocat/eurocat-data/prevalence_en
8. Bjornard K, Riehle-Colarusso T, Gilboa SM, Correa A. Patterns in the prevalence of congenital heart defects, metropolitan Atlanta, 1978 to 2005. Birth Defects Res A Clin Mol Teratol 2013; 97(2): 87–94.
9. Liu Y, Chen S, Zühlke L, Black GC, Choy MK, Li N, et al. Global birth prevalence of congenital heart defects 1970–2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol 2019; 48(2): 455–63.
10. Obeid R, Holzgreve W, Pietrzik K. Folate supplementation for prevention of congenital heart defects and low birth weight: an update. Cardiovasc Diagn Ther 2019; 9(Suppl 2): S424–33.
11. Jenkins KJ, Correa A, Feinstein JA, Botto L, Britt AE, Daniels SR, et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 2007; 115(23): 2995–3014.
12. Dolk H. EUROCAT: 25 years of European surveillance of congenital anomalies. Arch Dis Child Fetal Neonatal Ed 2005; 90(5): F355–8.
13. Reefhuis J, Honein MA. Maternal age and non-chromosomal birth defects, Atlanta 1968–2000: Teenager or thirty-something, who is at risk? Birth Defects Res A Clin Mol Teratol 2004; 70(9): 572–9.
14. Statistical Yearbook of Republika Srpska 2017 [Internet]. 2017 [cited 2021 September 5]. Available from: https://www.rzs.rs.ba/static/uploads/bilteni/godisnjak/2017/05stn_2017.pdf
15. Meller CH, Grinenco S, Aiello H, Córdoba A, Sáenz-Tejeira MM, Marantz P, et al. Congenital heart disease, prenatal diagnosis and management. Arch Argent Pediatr 2020; 118(2): e149–61.
16. Ramaekers P, Mannaerts D, Jacquemyn Y. Re: Prenatal detection of congenital heart disease--results of a national screening programme. BJOG 2015; 122(10): 1420–1.
17. Van Velzen CL, Clur SA, Rijlaarsdam ME, Bax CJ, Pajkrt CJ, Heymans MW, et al. Prenatal detection of congenital heart disease-results of a national screening programme. BJOG 2016; 123(3): 400–7.
18. Giraldo-Grueso M, Zarante I, Mejía-Grueso A, Gracia G. Risk factors for congenital heart disease: A case-control study. Rev Colomb Cardiol 2020; 27(4): 324–9.
19. Hedermann G, Hedley PL, Thagaard IN, Krebs L, Ekelund CK, Sørensen TIA, et al. Maternal obesity and metabolic disorders associated with congenital heart defects in the offspring: A systematic review. PLoS One 2021; 16(5): e0252343.
20. Su XJ, Yuan W, Huang GY, Olsen J, Li J. Paternal Age and Offspring Congenital Heart Defects: A National Cohort Study. PLoS One 2015; 10(3): e0121030.
21. Khairy P, Ionescu-Ittu R, Mackie AS, Abrahamowicz M, Pilote L, Marelli AJ. Changing mortality in congenital heart disease. J Am Coll Cardiol 2010; 56(14): 1149–57.
22. Miyake T. A review of isolated muscular ventricular septal defect. World J Pediatr 2020; 16(2): 120–8.