Ćelije nalik supresorskim ćelijama mijeloidnog porekla – potencijalni biomarker za prognozu kolorektalnog karcinoma?

  • Irina Brčerević Military Medical Academy, Clinic for Gastroenterology and Hepatology, Belgrade, Serbia
  • Radoje Doder Military Medical Academy, Clinic for Gastroenterology and Hepatology, Belgrade, Serbi a
  • Danilo Vojvodić University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
  • Nenad Perišić Military Medical Academy, Clinic for Gastroenterology and Hepatology, Belgrade, Serbia
  • Stanko Petrović Military Medical Academy, Clinic for Gastroenterology and Hepatology, Belgrade, Serbia
Ključne reči: biomarkeri, kolorektalne neoplazme, kostna srž, ćelije, supresorske, prognoza, lečenje, ishod

Sažetak


Uvod/Cilj. Supresorske ćelije mijeloidnog porekla (SĆMP) predstavljaju heterogenu grupu nezrelih ćelija, koje imaju sposobnost da inhibiraju i urođeni i stečeni imunski odgovor. Zbog svog imunosupresivnog efekta one mogu da podstiču rast i progresiju karcinoma. Kolorektalni karcinom (KRK) je jedan od najčešćih karcinoma u opštoj populaciji za čije odmakle stadijume još uvek ne postoji uspešna terapija. Osim što doprinose razvoju i širenju KRK, SĆMP bi mogle potencijalno biti i markeri njegove prognoze. Cilj rada bio je da se ispita potencijalna prognostička uloga broja SĆMP periferne krvi u KRK. Metode. U prospektivnoj studiji analizirana je mogućnost upotrebe CD16slabo+ granulocita i ćelija nalik monocitnim SĆMP (M-SĆMP), kao i odnosa neutrofila i limfocita (neutrophyl-to-lymphocyte ratio – NLR), limfocita i monocita (lymphocyte-to-monocyte ratio LMR), odnosa  CD16jako+/CD16slabo+ granulocita i odnosa monociti/ćelije nalik M-SĆMP, merenih pre početka tretmana, kao biomarkera za ukupno preživljavanje (UP) kod bolesnika sa KRK. U proceni  prognostičke uloge SĆMP u KRK korišćen je parametar odnos rizika, uz odgovarajući interval poverenja od 95%. Rezultati. Analizirano je 47 bolesnika u III i IV stadijumu  KRK,  prema TNM/AJCC sistemu klasifikacije bolesti. Pouzdani podaci dobijeni su od 32 bolesnika. Uzorci krvi bolesnika bili su uzeti pre eventualnog započinjanja lečenja (operacija, hemioterapija). Pokazano je da su povišene relativne i apsolutne vrednosti CD16slabo+ granulocita kao i apsolutne vrednosti ćelija nalik M-SĆMP bile povezane sa kraćim UP (p < 0,0066, p < 0,0013 i p < 0,0119, redom). Veza između odnosa CD16jako+/CD16slabo+ granulocita kao i odnosa monociti/ćelije nalik M-SĆMP i UP,  ukazala je na postojanje pozitivne korelacije između tih parametara, pri čemu je  viša vrednost korelacije ukazivala na duže UP  bolesnika (p < 0,0054 i p < 0,0148, redom). Između UP i NLR nađena je statistički značajna inverzna korelacija (p = 0,0349). Nije potvrđena statistički značajna povezanost između UP i LMR. Zaključak. Relativne i apsolutne vrednosti CD16slabo+ granulocita, kao i apsolutne vrednosti ćelija nalik M-SĆMP, odnos CD16jako+/CD16slabo+ granulocita, odnos monociti/ćelije nalik M-SĆMP i NLR, mogu biti pouzdani pokazatelji UP kod bolesnika sa KRK.

Reference

1.      Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71(3): 209‒49.

2.      World Health Organization. The Global Cancer Observatory. Available from:  https//www. gco.iarc.fr/today/data/factsheets/
populations/688-serbia-fact-sheets.pdf  [latest publications 2022 August 18].

3.      Aurif F, Kaur H, Chio JPG, Kittaneh M, Malik BH. The Association Between Cholecystectomy and Colorectal Cancer in the Female Gender. Cureus 2021; 13(12): e20113.

4.      Yang LP, Wang ZX, Zhang R, Zhou N, Wang AM, Liang W, et al. Association between cigarette smoking and colorectal cancer sidedness: A multi-center big-data platform-based analysis. J Transl Med 2021; 19(1): 150.

5.      Yu P, Fu YX. Tumor-infiltrating T lymphocytes: friends or foes? Lab Invest 2006; 86(3): 231‒45.

6.      Duwe AK, Singhal SK. The immunoregulatory role of bone marrow. I. Suppression of the induction of antibody responses to T-dependent and T-independent antigens by cells in the bone marrow. Cell Immunol 1979; 43(2): 362‒71.

7.      Talmadge JE, Gabrilovich DI. History of myeloid-derived suppressor cells. Nat Rev Cancer 2013; 13(10): 739‒52.

8.      Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 2016; 7: 12150.

9.      Condamine T, Dominguez GA, Youn JI, Kossenkov AV, Mony S, Alicea-Torres K,  et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol 2016; 1(2): aaf8943.

10.   Ma P, Beatty PL, McKolanis J, Brand R, Schoen RE, Finn OJ. Circulating Myeloid-Derived Suppressor Cells (MDSC) That Accumulate in Premalignancy Share Phenotypic and Functional Characteristics With MDSC in Cancer. Front Immunol 2019; 10: 1401.

11.   Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3): 162‒74.

12.   Tcyganov E, Mastio J, Chen E, Gabrilovich DI. Plasticity of myeloid-derived suppressor cells in cancer. Curr Opin Immunol 2018; 51: 76‒82

13.   Köstlin-Gille N, Gille C. Myeloid-Derived Suppressor Cells in Pregnancy and the Neonatal Period. Front Immunol 2020; 11: 584712.

14.   Medina E, Hartl D. Myeloid-Derived Suppressor Cells in Infection: A General Overview. J Innate Immun 2018; 10(5‒6): 407‒13.

15.   Wang YG, Xiong X, Chen ZY, Liu KL, Yang JH, Wen Q, et al. Expansion of myeloid-derived suppressor cells in patients with acute coronary syndrome. Cell Physiol Biochem 2015; 35(1): 292‒304.

16.   Ostrand-Rosenberg S. Myeloid derived-suppressor cells: their role in cancer and obesity. Curr Opin Immunol 2018; 51: 68‒75.

17.   Friedrich K, Sommer M, Strobel S, Thrum S, Blüher M, Wagner U, et al. Perturbation of the Monocyte Compartment in Human Obesity. Front Immunol 2019; 10: 1874.

18.   Schrijver IT, Théroude C, Roger T. Myeloid-Derived Suppressor Cells in Sepsis. Front Immunol 2019; 10: 327.

19.   Thome AD, Faridar A, Beers DR, Thonhoff JR, Zhao W, Wen S, et al. Functional alterations of myeloid cells during the course of Alzheimer's disease. Mol Neurodegener 2018; 13(1): 61.

20.   Chen S, Liu Y, Niu Y, Xu Y, Zhou Q, Xu X, et al. Increased abundance of myeloid-derived suppressor cells and Th17 cells in peripheral blood of newly-diagnosed Parkinson's disease patients. Neurosci Lett 2017; 648: 21‒5.

21.   Toor SM, Syed Khaja AS, El Salhat H, Bekdache O, Kanbar J, Jaloudi M, et al. Increased Levels of Circulating and Tumor-Infiltrating Granulocytic Myeloid Cells in Colorectal Cancer Patients. Front Immunol 2016; 7: 560.

22.   Zhang B, Wang Z, Wu L, Zhang M, Li W, Ding J, et al. Circulating and tumor-infiltrating myeloid-derived suppressor cells in patients with colorectal carcinoma. PLoS One 2013; 8(2): e57114.

23.   Kusmartsev S, Gabrilovich DI. Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev 2006; 25(3): 323‒31.

24.   Meirow Y, Kanterman J, Baniyash M. Paving the Road to Tumor Development and Spreading: Myeloid-Derived Suppressor Cells are Ruling the Fate. Front Immunol 2015; 6: 523.

25.   Saleem SJ, Martin RK, Morales JK, Sturgill JL, Gibb DR, Graham L, et al. Cutting edge: mast cells critically augment myeloid-derived suppressor cell activity. J Immunol 2012; 189(2): 511‒5.

26.   Obermajer N, Muthuswamy R, Lesnock J, Edwards RP, Kalinski P. Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 2011; 118(20): 5498‒505.

27.   Chouaib S, Umansky V, Kieda C. The role of hypoxia in shaping the recruitment of proangiogenic and immunosuppressive cells in the tumor microenvironment. Contemp Oncol (Pozn) 2018; 22(1A): 7‒13.

28.   Chun E, Lavoie S, Michaud M, Gallini CA, Kim J, Soucy G, et al. CCL2 Promotes Colorectal Carcinogenesis by Enhancing Polymorphonuclear Myeloid-Derived Suppressor Cell Population and Function. Cell Rep 2015; 12(2): 244‒57.

29.   OuYang LY, Wu XJ, Ye SB, Zhang RX, Li ZL, Liao W, et al. Tumor-induced myeloid-derived suppressor cells promote tumor progression through oxidative metabolism in human colorectal cancer. J Transl Med 2015; 13: 47.

30.   Wang Y, Yin K, Tian J, Xia X, Ma J, Tang X, et al. Granulocytic Myeloid-Derived Suppressor Cells Promote the Stemness of Colorectal Cancer Cells through Exosomal S100A9. Adv Sci (Weinh) 2019; 6(18): 1901278.

31.   Sun HL, Zhou X, Xue YF, Wang K, Shen YF, Mao JJ, et al. Increased frequency and clinical significance of myeloid-derived suppressor cells in human colorectal carcinoma. World J Gastroenterol 2012; 18(25): 3303‒9.

32.   Yang R, Cai TT, Wu XJ, Liu YN, He J, Zhang XS, et al. Tumour YAP1 and PTEN expression correlates with tumour-associated myeloid suppressor cell expansion and reduced survival in colorectal cancer. Immunology 2018; 155(2): 263‒72.

33.   Tada K, Kitano S, Shoji H, Nishimura T, Shimada Y, Nagashima K, et al Pretreatment Immune Status Correlates with Progression-Free Survival in Chemotherapy-Treated Metastatic Colorectal Cancer Patients. Cancer Immunol Res 2016; 4(7): 592‒9.

34.   Shimura T, Shibata M, Gonda K, Hayase S, Sakamoto W, Okayama H, et al. Prognostic impact of preoperative lymphocyte-to-monocyte ratio in patients with colorectal cancer with special reference to myeloid-derived suppressor cells. Fukushima J Med Sci 2018; 64(2): 64‒72.

35.   Zou ZY, Liu HL, Ning N, Li SY, DU XH, Li R. Clinical significance of pre-operative neutrophil lymphocyte ratio and platelet lymphocyte ratio as prognostic factors for patients with colorectal cancer. Oncol Lett 2016; 11(3): 2241‒8.

36.   Peng J, Li H, Ou Q, Lin J, Wu X, Lu Z, et al. Preoperative lymphocyte-to-monocyte ratio represents a superior predictor compared with neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios for colorectal liver-only metastases survival. Onco Targets Ther 2017; 10: 3789‒99.

37.   Stanojevic I, Miller K, Kandolf-Sekulovic L, Mijuskovic Z, Zolotarevski L, Jovic M, et al. A subpopulation that may correspond to granulocytic myeloid-derived suppressor cells reflects the clinical stage and progression of cutaneous melanoma. Int Immunol 2016; 28(2): 87‒97.

38.   Bzowska M, Hamczyk M, Skalniak A, Guzik K. Rapid decrease of CD16 (FcγRIII) expression on heat-shocked neutrophils and their recognition by macrophages. J Biomed Biotechnol 2011; 2011: 284759.

39.   Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol 2018; 19(2): 108‒19.

40.   Lu Y, Huang Y, Huang L, Xu Y, Wang Z, Li H, et al. CD16 expression on neutrophils predicts treatment efficacy of capecitabine in colorectal cancer patients. BMC Immunol 2020; 21(1): 46.

41.   Afari M, Bhat T. Neutrophil to lymphocyte ratio (NLR) and cardiovascular diseases: an update. Expert Rev Cardiovasc Ther 2016; 14(5): 573‒7.

42.   Fědorová L, Pilátová K, Selingerová I, Bencsiková B, Budinská E, Zwinsová B, et al. Circulating Myeloid-Derived Suppressor Cell Subsets in Patients with Colorectal Cancer - Exploratory Analysis of Their Biomarker Potential. Klin Onkol 2018; 31(Suppl 2): 88‒92.

43.   Wang PF, Song SY, Wang TJ, Ji WJ, Li SW, Liu N, et al. Prognostic role of pretreatment circulating MDSCs in patients with solid malignancies: A meta-analysis of 40 studies. Oncoimmunology 2018; 7(10): e1494113.

44.   Lang S, Bruderek K, Kaspar C, Höing B, Kanaan O, Dominas N, et al. Clinical Relevance and Suppressive Capacity of Human Myeloid-Derived Suppressor Cell Subsets. Clin Cancer Res 2018; 24(19): 4834‒44.

45.  Sheng IY, Diaz-Montero CM, Rayman P, Wei W, Finke JH, Kim JS, et al. Blood Myeloid-Derived Suppressor Cells Correlate with Neutrophil-to-Lymphocyte Ratio and Overall Survival in Metastatic Urothelial Carcinoma. Target Oncol 2020; 15(2): 211‒20.

46.  Qian C, Cai R, Zhang W, Wang J, Hu X, Zhang Y, et al. Neutrophil-Lymphocyte Ratio and Circulating Tumor Cells Counts Predict Prognosis in Gastrointestinal Cancer Patients. Front Oncol 2021; 11: 710704.

47.  Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep 2015; 10(4): 562‒73.

48.  Olingy CE, Dinh HQ, Hedrick CC. Monocyte heterogeneity and functions in cancer. J Leukoc Biol 2019; 106(2): 309‒22.

49.  Bergenfelz C, Larsson AM, von Stedingk K, Gruvberger-Saal S, Aaltonen K, Jansson S, et al. Systemic Monocytic-MDSCs Are Generated from Monocytes and Correlate with Disease Progression in Breast Cancer Patients. PLoS One 2015; 10(5): e0127028.

50.  Wang L, Chang EW, Wong SC, Ong SM, Chong DQ, Ling KL. Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. J Immunol 2013; 190(2): 794‒804.

51.  Shen P, Wang A, He M, Wang Q, Zheng S. Increased circulating Lin(-/low) CD33(+) HLA-DR(-) myeloid-derived suppressor cells in hepatocellular carcinoma patients. Hepatol Res 2014; 44(6): 639‒50.

52.  Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol 2016; 37(3): 208‒20.

53.  Wu WC, Sun HW, Chen HT, Liang J, Yu XJ, Wu C, et al. Circulating hematopoietic stem and progenitor cells are myeloid-biased in cancer patients. Proc Natl Acad Sci USA 2014; 111(11): 4221‒6.

54.  Kim CH. Homeostatic and pathogenic extramedullary hematopoiesis. J Blood Med 2010; 1: 13‒9.

55.   Choi J, Maeng HG, Lee SJ, Kim YJ, Kim DW, Lee HN, et al. Diagnostic value of peripheral blood immune profiling in colorectal cancer. Ann Surg Treat Res 2018; 94(6): 312‒21.

Objavljeno
2023/06/30
Rubrika
Originalni članak