Taloženje gadolinijuma u mozgu bolesnika sa relapsno-remitentnom multiplom sklerozom nakon 10 godina praćenja

  • Dejan Kostić Military Medical Academy, Institute of Radiology, Belgrade, Serbia
  • Miroslav Mišović Military Medical Academy, Institute of Radiology, Belgrade, Serbia
  • Filip Vučković University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
  • Djuro Crevar University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
  • Igor Sekulić Military Medical Academy, Institute of Radiology, Belgrade, Serbia
  • Biljana Geogievski-Brkić Special Hospital for Cerebrovascular Diseases “Sveti Sava”, Department of Radiology Diagnostics, Belgrade, Serbia
  • Smiljana Kostić University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
  • Evica Dinčić University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
Ključne reči: gadolinijum dtpa, neželjeni efekti, dugoročni, magnetska rezonanca, snimanje, multipla skleroza, relapsno-remitentna

Sažetak


Uvod/Cilj. Od 2014. godine kao i od objavljivanja rezultata prve studije o akumulaciji kontrastnih sredstava na bazi gadolinijuma (gadolinium-based contrast agents – GBCAs), svedoci smo sve većeg broja dokaza o taloženju i zadržavanju gadolinijuma u mozgu nakon primene ovih sredstava. Međutim, još uvek nema jakih kliničkih dokaza o štetnim efektima GBCAs na moždani parenhim. Cilj rada bio je da se utvrdi postojanje naslaga gadolinijuma u mozgu kod bolesnika sa relapsno-remitentnom multiplom sklerozom nakon desetogodišnjeg perioda praćenja. Tokom ovog perioda, bolesnici su redovno, svake godine, bili podvrgnuti pregledu magnetnom rezonancom (MR) koji je uključivao davanje linearnog kontrastnog sredstva (gadopentetat dimeglumin – Magnevist®) kako bi se pratio tok bolesti. Metode. Za potrebe ove studije formirana je kohorta od 20 bolesnika. Za svakog bolesnika je upoređivan odnos vrednosti intenziteta signala (IS) u različitim regionima mozga i IS cerebrospinalnog likvora (CSL) na inicijalnom pregledu primenom MR i na pregledu deset godina kasnije primenom iste metode. Rezultati. Odnosi IS frontalnog korteksa i CSL-a (p < 0,01), okcipitalnog korteksa i CSL-a (p < 0,01), bele mase corona radiata i CSL-a (p < 0,01), parijetalnog korteksa i CSL-a (p < 0,05), talamusa i CSL-a (p = 0,051), putamena i CSL-a (p = 0,06) i cornu anterior i posterior capsula interna i CSL-a (p = 0,062) povećali su se nakon višestruke primene gadopentetata. Porast apsolutnih vrednosti T1-weighted (T1W) signala kod tri četvrtine bolesnika registrovan je u frontalnom i okcipitalnom korteksu i hemisferi malog mozga. Nešto manje povećanje IS, ali ipak veće od 55–65%, registrovano je u strukturama kao što su: parijetalni korteks, putamen, cornu anterior i posterior capsula interna, corpus callosum (CC) splenium, pons, talamus, nucleus caudatus, substantia nigra, CC genu i temporalni korteks. Zaključak. U kohorti od 20 bolesnika pokazano je statistički značajno povećanje IS u prekontrastnoj T1W sekvenci u sledećim strukturama: frontalnom, parijetalnom i okcipitalnom korteksu, kao i beloj masi corona radiata. Rezultati govore u prilog tome da postoji hronično deponovanje gadolinijumskog kontrastnog sredstva, gadopentetat dimeglumina, u moždanim strukturama.

Biografija autora

Dejan Kostić, Military Medical Academy, Institute of Radiology, Belgrade, Serbia

docent

 

Reference

1. Matsumura T, Hayakawa M, Shimada F, Yabuki M, Dohanish S, Palkowitsch P, et al. Safety of gadopentetate dimeglumine after 120 million administrations over 25 years of clinical use. Magn Reson Med Sci 2013; 12(4): 297–304.

2. Lohrke J, Frenzel T, Endrikat J, Alves FC, Grist TM, Law M, et al. 25 years of contrast-enhanced MRI: developments, current challenges, and future perspectives. Adv Ther 2016; 33(1): 1–28.

3. Grobner T. Gadolinium- a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic sys-temic fibrosis? Nephrol Dial Transplant 2006; 21(4): 1104–8.

4. Xia D, Davis RL, Crawford JA, Abraham JL. Gadolinium re-leased from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy-dispersive X-ray spectroscopy. Acta Radiol 2010; 51(10): 1126–36.

5. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with an in-creasing cumulative dose of gadolinium-based contrast materi-al. Radiology 2014; 270(3): 834–41.

6. Semelka RC, Ramalho J, Vakharia A, AlObaidy M, Burke LM, Jay M, et al. Gadolinium deposition disease: initial description of a disease that has been around for a while. Magn Reson Imaging 2016; 34(10): 1383–90.

7. Kuno H, Jara H, Buch K, Qureshi MM, Chapman MN, Sakai O. Global and regional brain assessment with quantitative MR imaging in patients with prior exposure to linear gadolinium-based contrast agents. Radiology 2017; 283(1): 195–204.

8. Ramalho M, Ramalho J, Burke LM, Semelka RC. Gadolinium Re-tention and Toxicity-An Update. Adv Chronic Kidney Dis 2017; 24(3): 138–46.

9. Lord ML, Chettle DR, Gräfe JL, Noseworthy MD, McNeill FE. Observed deposition of gadolinium in bone using a new non-invasive in vivo biomedical device: Results of a small pilot fea-sibility study. Radiology 2018; 287(1): 96–103.

10. White GW, Gibby WA, Tweedle MF. Comparison of Gd (DTPA-BMA) (Omniscan) versus Gd (HP-DO3A) (Pro-Hance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy. Invest Ra-diol 2006; 41(3): 272–8.

11. Darrah TH, Prutsman-Pfeiffer JJ, Poreda RJ, Ellen Campbell M, Hauschka PV, Hannigan RE. Incorporation of excess gadolini-um into human bone from medical contrast agents. Metallom-ics 2009; 1(6): 479–88.

12. Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic res-onance imaging. J Am Soc Nephrol 2006; 17(9): 2359–62.

13. Grobner T, Prischl FC. Gadolinium and nephrogenic systemic fibrosis. Kidney Int 2007; 72(3): 260–4.

14. Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann HJ. Stabil-ity of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C. Invest Radiol 2008; 43(12): 817–28.

15. Pałasz A, Czekaj P. Toxicological and cytophysiological aspects of lanthanides action. Acta Biochim Pol 2000; 47(4): 1107–14.

16. Idée JM, Port M, Robic C, Medina C, Sabatou M, Corot C. Role of thermodynamic and kinetic parameters in gadolinium chelate stability. J Magn Reson Imaging 2009; 30(6): 1249–58.

17. Roccatagliata L, Vuolo L, Bonzano L, Pichiecchio A, Mancardi GL. Multiple sclerosis: hyperintense dentate nucleus on unen-

hanced T1-weighted MR images is associated with the second-ary progressive subtype. Radiology 2009; 251(2): 503–10.

18. Lai PH, Chen C, Liang HL, Pan HB. Hyperintense basal ganglia on T1-weighted MR imaging. AJR Am J Roentgenol 1999; 172(4): 1109–15.

19. Lai PH, Tien RD, Chang MH, Teng MM, Yang CF, Pan HB, et al. Chorea-ballismus with nonketotic hyperglycemia in primary diabetes mellitus. AJNR Am J Neuroradiol 1996; 17(6): 1057–64.

20. Kanda T, Osawa M, Oba H, Toyoda K, Kotoku J, Haruyama T, et al. High Signal Intensity in Dentate Nucleus on Unenhanced T1-weighted MR Images: Association with Linear versus Mac-rocyclic Gadolinium Chelate Administration. Radiology 2015; 275(3): 803–9.

21. Kanda T, Fukusato T, Matsuda M, Toyoda K, Oba H, Kotoku J, et al. Gadolinium-based Contrast Agent Accumulates in the Brain Even in Subjects without Severe Renal Dysfunction: Evaluation of Autopsy Brain Specimens with Inductively Coupled Plasma Mass Spectroscopy. Radiology 2015; 276(1): 228–32.

22. Zhang Y, Cao Y, Shih GL, Hecht EM, Prince MR. Extent of Sig-nal Hyperintensity on Unenhanced T1-weighted Brain MR Images after More than 35 Administrations of Linear Gadolin-ium-based Contrast Agents. Radiology 2017; 282(2): 516–25.

23. Radbruch A, Weberling LD, Kieslich PJ, Hepp J, Kickingereder P, Wick W, et al. High-Signal Intensity in the Dentate Nucleus and Globus Pallidus on Unenhanced T1-Weighted Images: Evaluation of the Macrocyclic Gadolinium-Based Contrast Agent Gadobutrol. Invest Radiol 2015; 50(12): 805–10.

24. Eisele P, Alonso A, Szabo K, Ebert A, Ong M, Schoenberg SO, et al. Lack of increased signal intensity in the dentate nucleus after repeated administration of a macrocyclic contrast agent in multiple sclerosis: An observational study. Medicine (Balti-more) 2016; 95(39): e4624.

25. Cao Y, Huang DQ, Shih G, Prince MR. Signal Change in the Dentate Nucleus on T1-Weighted MR Images After Multiple Administrations of Gadopentetate Dimeglumine Versus Gadobutrol. AJR Am J Roentgenol 2016; 206(2): 414–9.

26. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Paolini MA, Murray DL, et al. Gadolinium Deposition in Human Brain Tis-sues after Contrast-enhanced MR Imaging in Adult Patients without Intracranial Abnormalities. Radiology 2017; 285(2): 546–54.

27. McDonald RJ, Levine D, Weinreb J, Kanal E, Davenport MS, Ellis JH, et al. Gadolinium Retention: A Research Roadmap from the 2018 NIH/ACR/RSNA Workshop on Gadolinium Che-lates. Radiology 2018; 289(2): 517–34.

28. Adin ME, Kleinberg L, Vaidya D, Zan E, Mirbagheri S, Yousem DM. Hyperintense Dentate Nuclei on T1-Weighted MRI: Re-lation to Repeat Gadolinium Administration. AJNR Am J Neuroradiol 2015; 36(10): 1859–65.

29. Choi JW, Moon WJ. Gadolinium Deposition in the Brain: Cur-rent Updates. Korean J Radiol 2019; 20(1): 134–47.

30. Welk B, McArthur E, Morrow SA, MacDonald P, Hayward J, Leung A, et al. Association Between Gadolinium Contrast Exposure and the Risk of Parkinsonism. JAMA 2016; 316(1): 96–8.

Objavljeno
2023/09/29
Rubrika
Originalni članak