Procena položaja impaktiranih gornjih očnjaka, određivanje mogućih pokazatelja težine impakcije i faktora rizika od resorpcije korenova susednih zuba
Sažetak
Uvod/Cilj. Impaktirani zub je zub koji nije mogao da izbije i zauzme odgovarajuće mesto u zubnom nizu. Impaktirani maksilarni očnjaci su veoma čest problem u ortodontskoj praksi. Po učestalosti slučajeva impakcije, maksilarni očnjaci su na drugom mestu, iza umnjaka. Cilj studije preseka bio je da se proceni dvodimenzionalni i trodimenzionalni položaj impaktiranih maksilarnih očnjaka, kao i da se deskriptivnom studijom analiziraju mogući pokazatelji težine impakcije i faktori rizika od resorpcije korenova susednih zuba. Metode. Studijom je obuhvaćeno 94 ispitanika sa 116 impaktiranih očnjaka. Položaj očnjaka u dvodimenzionalnom sistemu ispitan je na panoramskoj projekciji snimka dobijenog metodom kompjuterizovane tomografije konusnog zraka (KTKZ). Položaj očnjaka duž X, Y i Z ose ispitan je i procenjen primenom novog sistema klasifikacije, koji uključuje trodimenzionalne informacije iz snimka KTKZ – KPG indeksa. Na osnovu vrednosti KPG indeksa, impakcija je bila ocenjena kao laka, umerena, teška i veoma teška. Da bi se utvrdili pokazatelji težine impakcije i faktori rizika od resorpcije korenova susednih zuba, primenom multivariacione regresije ispitivane su kvalitativne varijable (pol, strana impakcije, itd.), kao i kvantitativne varijable [životno doba, položaj očnjaka prema okluzalnoj ravni (OkR), itd.]. Rezultati. Prosečna starost ispitanika bila je 19,8 ± 5,2 godina. Učestalost impakcija kod žena bila je dva puta veća nego kod muškaraca. Većina (71,4%) impakcija bile su unilateralne, sa palatinalnim položajem očnjaka. Resorpcija korenova susednih zuba uočena je kod 27,3% slučajeva, a impakcijom je najčešće bio zahvaćen centralni sekutić. U više od polovine impaktiranih očnjaka težina impakcije je bila umerena. U univarijabilnoj analizi, rastojanje očnjaka od sagitalne medijalne linije (SML), nagib očnjaka prema SML i OkR, kao i nagib očnjaka prema prvom premolaru pokazali su statističku značajnost za procenu težine impakcije. Multivarijabilnom analizom ustanovljeno je da nagib očnjaka prema prvom premolaru može biti pokazatelj rizika od resorpcije korenova susednih zuba. Zaključak. Većina impaktiranih očnjaka bila je palatinalno postavljena, sa vrednostima KPG indeksa koji je ukazivao na umerenu težinu impakcije. Pored položaja očnjaka prema OkR i SML, u okviru dijagnostičkih procedura trebalo bi izmeriti i nagib očnjaka prema prvom premolaru, kako bi se procenio rizik od resoprcije korenova susednih zuba, sprečila resorpcija i odredio plan terapije.
Reference
1. Al-Zoubi H, Alharbi AA, Ferguson DJ, Zafar MS. Frequency of impacted teeth and categorization of impacted canines: A retrospective radiographic study using orthopantomograms. Eur J Dent 2017; 11(1): 117–21.
2. Proffit WR, Fields Jr HW, Sarver DM. Contemporary Orthodontics. 4th ed. St. Louis: Mosby; 2007.
3. Dewel BF. The upper cuspid: Its development and impaction. Angle Orthod 1949; 19(2): 79–90.
4. Lövgren ML, Dahl O, Uribe P, Ransjö M, Westerlund A. Prevalence of impacted maxillary canines-an epidemiological study in a region with systematically implemented interceptive treatment. Eur J Orthod 2019; 41(5): 454–9.
6. Grisar K, Piccart F, Al-Rimawi AS, Basso I, Politis C, Jacobs R. Three-dimensional position of impacted maxillary canines: Prevalence, associated pathology and introduction to a new classification system. Clin Exp Dent Res 2019; 5(1): 19–25.
7. Sacerdoti R, Baccetti T. Dentoskeletal features associated with unilateral or bilateral palatal displacement of maxillary canines. Angle Orthod 2004; 74(6): 725–32.
8. Lai CS, Bornstein MM, Mock L, Heuberger BM, Dietrich T, Katsaros C. Impacted maxillary canines and root resorptions of neighbouring teeth: a radiographic analysis using cone-beam computed tomography. Eur J Orthod 2013; 35(4): 529–38.
9. Liu DG, Zhang WL, Zhang ZY, Wu YT, Ma XC. Localization of impacted maxillary canines and observation of adjacent incisor resorption with cone-beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 105(1): 91–8.
10. Walker L, Enciso R, Mah J. Three-dimensional localization of maxillary canines with cone-beam computed tomography. Am J Orthod Dentofacial Orthop 2005; 128(4): 418–23.
11. Mitsea A, Palikaraki G, Karamesinis K, Vastardis H, Gizani S, Sifakakis I. Evaluation of Lateral Incisor Resorption Caused by Impacted Maxillary Canines Based on CBCT: A Systematic Review and Meta-Analysis. Children (Basel) 2022; 9(7): 1006.
12. Kalavritinos M, Benetou V, Bitsanis E, Sanoudos M, Alexiou K, Tsiklakis K, et al. Incidence of incisor root resorption associated with the position of the impacted maxillary canines: A cone-beam computed tomographic study. Am J Orthod Dentofacial Orthop 2020; 157(1): 73–9.
13. Simić S, Nikolić P, Stanišić Zindović J, Jovanović R, Stošović Kalezić I, Djordjević A, et al. Root Resorptions on Adjacent Teeth Associated with Impacted Maxillary Canines. Diagnostics (Basel) 2022; 12(2): 380.
14. Kau CH, Pan P, Gallerano RL, English JD. A novel 3D classification system for canine impactions--the KPG index. Int J Med Robot 2009; 5(3): 291–6.
15. Kau CH, Lee JJ, Souccar NM. The validation of a novel index assessing canine impactions. Eur J Dent 2013; 7(4): 399–404.
16. San Martín DE, English JD, Kau CH, Gallerano RL, McGrory KR, Salas AM, et al. The KPG index--a novel 3D classification system for maxillary canine impactions. Tex Dent J 2012; 129(3): 265–74.
17. Rafflenbeul F, Gros CI, Lefebvre F, Bahi-Gross S, Maizeray R, Bolender Y. Prevalence and risk factors of root resorption of adjacent teeth in maxillary canine impaction, among untreated children and adolescents. Eur J Orthod 2019; 41(5): 447–53.
18. Jain S, Debbarma S. Patterns and prevalence of canine anomalies in orthodontic patients. Med Pharm Rep 2019; 92(1): 72–8.
19. Naoumova J, Kjellberg H. The use of panoramic radiographs to decide when interceptive extraction is beneficial in children with palatally displaced canines based on a randomized clinical trial. Eur J Orthod 2018; 40(6): 565–74.
20. Simić S, Pavlović J, Nikolić PV, Vujaĉić A, Vukićević V, Jovanović R. The prevalence of peg-shaped and missing lateral incisors with maxillary impacted canines. Vojnosanit Pregl 2019; 76(1): 61–66.
21. Bolas-Colvee B, Tarazona B, Paredes-Gallardo V, Arias-De Luxan S. Relationship between perception of smile esthetics and orthodontic treatment in Spanish patients. PLoS One 2018; 13(8): e0201102.
22. Pithon MM, Bastos GW, Miranda NS, Sampaio T, Ribeiro TP, Nascimento LE, et al. Esthetic perception of black spaces between maxillary central incisors by different age groups. Am J Orthod Dentofacial Orthop 2013; 143(3): 371–5.
23. Grisar K, Luyten J, Preda F, Martin C, Hoppenreijs T, Politis C, et al. Interventions for impacted maxillary canines: A systematic review of the relationship between initial canine position and treatment outcome. Orthod Craniofac Res 2021; 24(2): 180–93.
24. Sosars P, Jakobsone G, Neimane L, Mukans M. Comparative analysis of panoramic radiography and cone-beam computed tomography in treatment planning of palatally displaced canines. Am J Orthod Dentofacial Orthop 2020; 157(5): 719–27.
25. Alqerban A, Jacobs R, Fieuws S, Willems G. Predictors of root resorption associated with maxillary canine impaction in panoramic images. Eur J Orthod 2016; 38(3): 292–9.
26. Alemam AA, Abu Alhaija ES, Mortaja K, AlTawachi A. Incisor root resorption associated with palatally displaced maxillary canines: Analysis and prediction using discriminant function analysis. Am J Orthod Dentofacial Orthop 2020; 157(1): 80–90.
27. Chaushu S, Kaczor-Urbanowicz K, Zadurska M, Becker A. Predisposing factors for severe incisor root resorption associated with impacted maxillary canines. Am J Orthod Dentofacial Orthop 2015; 147(1): 52–60.
28. Ericson S, Kurol J. Resorption of maxillary lateral incisors caused by ectopic eruption of the canines. A clinical and radiographic analysis of predisposing factors. Am J Orthod Dentofacial Orthop 1988; 94(6): 503–13.
29. Schroder AGD, Guariza-Filho O, de Araujo CM, Ruellas AC, Tanaka OM, Porporatti A. To what extent are impacted canines associated with root resorption of the adjacent tooth?: A systematic review with meta-analysis. J Am Dent Assoc 2018; 149(9): 765–77. e8.
30. Uribe P, Ransjö M, Westerlund A. Clinical predictors of maxillary canine impaction: a novel approach using multivariate analysis. Eur J Orthod 2017; 39(2): 153–60.
31. Peck JL, Sameshima GT, Miller A, Worth P, Hatcher DC. Mesiodistal root angulation using panoramic and cone beam CT. Angle Orthod 2007; 77(2): 206–13.
32. Alqerban A, Jacobs R, Fieuws S, Willems G. Comparison of two cone beam computed tomographic systems versus panoramic imaging for localization of impacted maxillary canines and detection of root resorption. Eur J Orthod 2011; 33(1): 93–102.
33. Jung YH, Liang H, Benson BW, Flint DJ, Cho BH. The assessment of impacted maxillary canine position with panoramic radiography and cone beam CT. Dentomaxillofac Radiol 2012; 41(5): 356–60.
34. Dalessandri D, Migliorati M, Visconti L, Contardo L, Kau CH, Martin C. KPG index versus OPG measurements: a comparison between 3D and 2D methods in predicting treatment duration and difficulty level for patients with impacted maxillary canines. Biomed Res Int 2014; 2014: 537620.
35. Dalessandri D, Migliorati M, Rubiano R, Visconti L, Contardo L, Di Lenarda R, et al. Reliability of a novel CBCT-based 3D classification system for maxillary canine impactions in orthodontics: the KPG index. Sci World J 2013; 2013: 921234.