Proizvodnja i upotreba humanih mezenhimskih stromalnih ćelija izolovanih iz placente za klinička istraživanja prve faze: uspostavljanje i procena protokola
Sažetak
Uvod/Cilj. Mezenhimske matične (stromalne) ćelije (MSCs) trenutno se koriste u velikom broju kliničkih istraživanja za različite kliničke indikacije. Iako je koštana srž uobičajeni izvor početnog materijala za kultivaciju ovih ćelija, količina ćelija koja se pri tome dobija i dalje predstavlja ograničavajući faktor. Alternativno, MSCs sve više se izoluju iz drugih tkiva kao što su placenta novorođenih beba ili masno tkivo. U inicijalnom istraživanju nije otkrivena nikakva razlika u osnovnim fenotipskim karakteristikama ćelijskih receptora, hemokinskih receptora ili sposobnosti ćelija za normalnu mezodermsku diferencijaciju između MSCs izolovanih iz placente i koštane srži. Cilj ovog rada bio je uspostavljanje i procena protokola za kultivaciju i odabir MSCs izolovanih iz placente i adekvatno pripremljenih za upotrebu u kliničkim istraživanjima prve faze. Metode. U ovoj studiji korišćena je placenta beba rođenih carskim rezom nakon normalne trudnoće. Izolacija, zasejavanje, inkubacija, krioprezervacija i kriterijumi za proizvodnju humanih MSCs bili su u skladu sa složenim regulatornim principima koji se u ovom trenutku primenjuju u Australiji. Rezultati. Uspostavljen je i procenjen detaljan protokol za pripremu MSCs i dat je pregled njihove upotrebe u tri različite kliničke studije. U prvoj studiji MSCs su date iv putem, pre alogene transplantacije matičnih ćelija krvi, u lečenju akutne mijeloidne leukemije refraktorne na terapiju. U drugoj studiji, MSCs su date iv u lečenju idiopatske fibroze pluća, bez ozbiljnih neželjenih efekata. U trećoj studiji, MSCs su injektovane direktno u mesto oštećenja tetive pod kontrolom ultrazvuka, u lečenju hronične refraktorne tendinopatije. Zaključak. Kliničke studije, bazirane na primeni ćelija alogenog i autolognog porekla, demonstrirale su bezbednu upotrebu MSCs. Prikazani protokol je pogodan za rane faze kliničkih istraživanja, relativno je pristupačan i može se lako prilagoditi različitim kliničkim uslovima i zakonskim regulativama.
Reference
Locke M, Feisst V, Dunbar RP. Concise Review: Human Adi-pose-Derived Stem Cells: Separating Promise from Clinical Need. Stem Cells 2011; 29(3): 404−11.
Barlow S, Brooke G, Chatterjee K, Price G, Pelekanos R, Rossetti T, et al. Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev 2008; 17(6): 1095−107.
Berry MF, Engler AJ, Woo YJ, Pirolli TJ, Bish LT, Jayasankar V, et al. . Mesenchymal stem cell injection after myocardial infarc-tion improves myocardial compliance. Am J Physiol Heart Circ Physiol 2006; 290(6): 2196−203.
Brooke G, Tong H, Levesque JP, Atkinson K. Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta. Stem Cells Dev 2008; 17(5): 929−40.
Brooke G, Rossetti T, Ilic N, Murray P, Hancock S, Atkinson K. Points to consider in designing mesenchymal stem cell-based clinical trials. Transf Med Hemother 2008; 35(4): 279−85.
Brooke G, Rossetti T, Pelekanos R, Ilic N, Murray P, Hancock S, et al. Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials. Brit J Haem 2009; 144(4): 571−9.
Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001; 98(8): 2396−402.
Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R. Mes-enchymal stem cells distribute to a wide range of tissues fol-lowing systemic infusion into nonhuman primates. Blood 2003; 101(8): 2999−3001.
Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, et al. Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 2012; 18(5): 759−65.
Caplan AI. Adult mesenchymal stem cells for tissue engineer-ing versus regenerative medicine. J Cell Physiol 2007; 213(2): 341−7.
Ilic N, Brooke G, Murray P, Barlow S, Rossetti T, Pelekanos R, et al. Manufacture of clinical grade human placenta-derived multi-potent mesenchymal stromal cells (MSC). In: Lucasgc VM, Rao MS, editors. Mesenchymal Stem Cell Assays and Applications. 1st ed. Heidelberg: Springer-Humana Press; 2011. p. 89−106.
Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring H, Evangelista M, et al. Concise Review: Isolation and Characterization of Cells from Human Term Placenta: Outcome of the First In-ternational Workshop on Placenta Derived Stem Cells. Stem Cells 2008; 26(2): 300−11.
Ilic N, Khalil D, Hancock S, Atkinson K. Regulatory Considera-tions Applicable to Manufacturing of Placenta-Derived Mes-enchymal Stromal Cells (MSC) Used in Clinical Trials in Aus-tralia and Comparison to USA and European Regulatory Frameworks. In: Lucas CG, Vemuri MC, editors. Mesenchymal Stem Cell Therapy, Stem Cell Biology and Regenerative Medi-cine Series. 1st ed. Heidelberg: Springer-Humana Press. 2013. p. 373−404.
Heazlewood C, Cook M, Ilic N, Atkinson K. Exploring the Human Term Placenta as a Novel Source for Stem Cells and their Application in the Clinic. In: Zheng J, editor. Recent Advances in Research on the Human Placenta. 1st ed. Rijeka: In Tech; 2012. p. 53−76.
Ilic N, Savic S, Siegel E, Atkinson K, Tasic Lj. Examination of the regulatory frameworks applicable to biologic drugs (including stem cells and their progeny) in Europe, the U.S., and Austra-lia: part I--a method of manual documentary analysis. Stem Cells Transl Med 2012; 1(12): 898−908.
Ilic N, Savic S, Siegel E, Atkinson K, Tasic Lj. Examination of the regulatory frameworks applicable to biologic drugs (including stem cells and their progeny) in Europe, the U.S., and Austra-lia: part II--a method of software documentary analysis. Stem Cells Transl Med 2012; 1(12): 909−20.
Yen LB, Huang HI, Chien C, Jui H, Ko B, Yao M, et al. Isolation of multipotent cells from human term placenta. Stem Cells 2005; 23(1): 3−9.
Pendleton C, Li Q, Chesler D, Yuan K, Guerrero-Cazares H, Quinones-Hinojosa A. Mesenchymal Stem Cells Derived from Adipose Tissue vs. Bone Marrow: In vitro Comparison of Their Tropism towards Gliomas. PloS One 2013; 8(3): 58198.
Olson SD, Pollock K, Kambal A, Cary W, Mitchell G, Tempkin J, et al.. Genetically engineered mesenchymal stem cells as a pro-posed therapeutic for Huntington's disease. Mol Neurobiol 2012; 45(1): 87−98.
Burra P, Bizzaro D, Ciccocioppo R, Marra F, Piscaglia AC, Porretti L, et al. . Therapeutic application of stem cells in gastroen-terology: An up-date. World J Gastroenterol 2011; 17(34): 3870−80.
Yust-Katz S, Fisher-Shoval Y, Barhum Y, Ben-Zur T, Barzilay R, Lev N, et al. Placental mesenchymal stromal cells induced into neurotrophic factor-producing cells protect neuronal cells from hypoxia and oxidative stress. Cytotherapy 2012; 14(1): 45−55.
Yang YH, Lee AJ, Barabino GA. Coculture-Driven Mesenchy-mal Stem Cell-Differentiated Articular Chondrocyte-Like Cells Support Neocartilage Development. Stem Cells Transl Med 2012; 1(11): 843−54.
Shin L, Peterson DA. Human Mesenchymal Stem Cell Grafts Enhance Normal and Impaired Wound Healing by Recruiting Existing Endogenous Tissue Stem/Progenitor Cells. Stem Cells Transl Med 2013; 2(1): 33−42.
Deskins DL, Bastakoty D, Saraswati S, Shinar A, Holt GE, Young PP. Human Mesenchymal Stromal Cells: Identifying Assays to Predict Potency for Therapeutic Selection. Stem Cells Transl Med 2013; 2(2): 151−8.
Miranda-Sayago JM, Fernández-Arcas N, Benito C, Reyes-Engel A, Carrera J, Alonso A. Lifespan of human amniotic fluid-derived multipotent mesenchymal stromal cells. Cytotherapy 2011; 13(5): 572−81.
Gharibi B, Hughes FJ. Effects of Medium Supplements on Pro-liferation, Differentiation Potential, and In Vitro Expansion of Mesenchymal Stem Cells. Stem Cells Transl Med 2012; 1(11): 771−82.
Pieri L, Urbani S, Mazzanti B, Dal PS, Santosuosso M, Saccardi R, Vannucchi MG. Human mesenchymal stromal cells preserve their stem features better when cultured in the Dulbecco's modified Eagle medium. Cytotherapy 2011; 13(5): 539−48.
Nur FM, Chua K, Tan G, Tan A, Hayati A. Human chorion-derived stem cells: changes in stem cell properties during serial passage. Cytotherapy 2011; 13(5): 582−93.
Jones BJ, Brooke G, Atkinson K, McTaggart SJ. Immunosup-pression by placental indoleamine 2,3-dioxygenase: a role for mesenchymal stem cells. Placenta 2007; 28(11–12): 1174–81.
