Prognostička vrednost „gustine“ tumor˗infiltrišućih T-limfocita u terapijskom odgovoru na inicijalnu hemioterapiju zasnovanu na platini kod bolesnika sa nesitnoćelijskim karcinomom pluća
/
Sažetak
Uvod/Cilj. Činjenica da karcinomi pluća, kao i drugi solidni tumori, mogu biti imunogeni, može imati značajnu prognostičku vrednost kod nesitnoćelijskog karcinoma pluća (NSĆKP). Specifične citotoksične T-limfocite (CTL) moguće je dokazati kod većine bolesnika sa primarnim tumorima različitih histoloških tipova. Dve glavne grupe T-limfocita učestvuju u prepoznavanju tumor-specifičnih antigena: CTL (CD8+) i pomoćnički (helper) T limfociti (CD4+). Cilj rada bio je da se proceni veza između infiltracije T-limfocita u tumor i terapijskog odgovora na inicijalnu hemioterapiju. Metode. U istraživanju su korišćeni podaci bolesnika sa NSĆKP, čiji je terapijski odgovor nakon inicijalna četiri ciklusa hemioterapije platinom posmatran u odnosu na „gustinu“ tumor-infiltrišućih T-limfocita (CD4+ i CD8+) u malim uzorcima biopsije tumora. Terapijski odgovor procenjivan je u skladu sa Response Evaluation Criteria in Solid Tumor (RECIST) 1.1 sistemom procene terapijskog odgovora. Na osnovu očekivanog terapijskog odgovora, bolesnici su bili podeljeni u tri grupe: bolesnici sa povoljnim terapijskim odgovorom (kompletna i delimična regresija), bolesnici u stabilnoj fazi bolesti i bolesnici sa progresijom bolesti. Broj limfocita za procenu gustine CD4+ i CD8+ Т-limfocita određen je uz uvećanje x200 (1,1 mm2). Za brojanje su odabrana tri vidna polja sa „najgušćim“ infiltratom limfocita, zatim su vrednosti svih pojedinačnih polja sabrane. Na osnovu srednje vrednosti, uzorci su klasifikovani u sledeće grupe: skor 0, skor 1, skor 2, skor 3. Prilikom statističke obrade podataka, niska gustina infiltracije objedinila je grupe skora 0 i 1, a visoka gustina infiltracije objedinila je grupe skora 2 i 3. Na osnovu prikupljenih podataka kreirana je baza u softveru SPSS 22.0 koja je korišćena za dalju statističku analizu. Statistička analiza podataka obuhvatila je deskriptivne i analitičke statističke metode. Rezultati. Nije bilo značajne razlike u distribuciji CD4+ T-limfocita i CD8+ T-limfocita u epitelnoj komponenti tumora između bolesnika sa različitim terapijskim odgovorom (χ2 = 2,977; p = 0,226 i χ2 = 1,329; p = 0,515, redom). Nije bilo značajnog uticaja gustine infiltracije CD4+ T-limfocita i CD8+ T-limfocita u stromalnoj komponenti tumora na terapijski odgovor (χ2 = 0,606; p = 0,739 i χ2 = 5,167; p = 0,076, redom). Zaključak. Istraživanjem nije dokazano da bolesnici sa visokim nivoom tumor infiltririšućih CD4+ i CD8+ T-limfocita u epitelnoj i stromalnoj komponenti NSĆKP imaju bolji terapijski odgovor na standardnu inicijalnu hemioterapiju.
Reference
1. International Agency for Research on Cancer – World Health Organization. Cancer Over Time – Age-standardized rate (World) per 100 000, incidence, males and females [Internet]. Lyon, FR: International Agency for Research on Cancer; 2016 [accessed 2023 May 22]. Available from: https://gco.
/>iarc.fr/overtime/en/dataviz/trends?populations=75200&multiple_populations=1&sexes=1_2
2. Bunn PA Jr, Kelly K. New combinations in the treatment of lung cancer: a time for optimism. Chest 2000; 117(4 Suppl 1): 138S–143S.
3. Bunn PA Jr. Chemotherapy for advanced non-small-cell lung cancer: who, what, when, why? J Clin Oncol 2002; 20(18 Suppl): 23S–33S.
4. American Cancer Society. Lung Cancer – Early Detection, Diagnosis, and Staging [Internet]. Atlanta, GA: American Cancer Society; 2019 [updated 2023 March 1; accessed 2023 May 18]. Available from: https://www.cancer.org/content/dam/
/>CRC/PDF/Public/8705.00.pdf
5. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394–424.
6. Uramoto H, Tanaka F. Recurrence after surgery in patients with NSCLC. Transl Lung Cancer Res 2014; 3(4): 242–9.
7. Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol 2019; 30(8): 1321–8.
8. Chen DS, Mellman I. Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity 2013; 39(1): 1–10.
9. Ganesan AP, Johansson M, Ruffell B, Yagui-Beltrán A, Lau J, Jablons DM, et al. Tumor-infiltrating regulatory T cells inhibit endogenous cytotoxic T cell responses to lung adenocarcinoma. J Immunol 2013; 191(4): 2009–17.
10. Ishibashi Y, Tanaka S, Tajima K, Yoshida T, Kuwano H. Expression of Foxp3 in non-small cell lung cancer patients is significantly higher in tumor tissues than in normal tissues, especially in tumors smaller than 30 mm. Oncol Rep 2006; 15(5): 1315–9.
11. Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012; 12(4): 298–306.
12. Galon J, Pagès F, Marincola FM, Angell HK, Thurin M, Lugli A, et al. Cancer classification using the Immunoscore: a worldwide task force. J Transl Med 2012; 10: 205.
13. Donnem T, Kilvaer TK, Andersen S, Richardsen E, Paulsen EE, Hald SM, et al. Strategies for clinical implementation of TNM-Immunoscore in resected nonsmall-cell lung cancer. Ann Oncol 2016; 27(2): 225–32.
14. Hanna N, Johnson D, Termin S, Baker S Jr, Brahmer J, Ellis PM, et al. Systemic therapy for stage IV non-small-cell lung cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 2017; 35(30): 3484–515.
15. Pirker R, Filipits M. Adjuvant Therapy in Patients With Completely Resected Non-small-cell Lung Cancer: Current Status and Perspectives. Clin Lung Cancer 2019; 20(1): 1–6.
16. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 2002; 346(2): 92–8.
17. Baggstrom MQ, Stinchcombe TE, Fried DB, Poole C, Hensing TA, Socinski MA. Third-generation chemotherapy agents in the treatment of advanced non-small cell lung cancer: a meta-analysis. J Thorac Oncol 2007; 2(9): 845–53.
18. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013; 39(4): 782–95.
19. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004; 21(2): 137–48.
20. Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 2008; 26(27): 4410–7.
21. Brambilla E, Le Teuff G, Marguet S, Lantuejoul S, Dunant A, Graziano S, et al. Prognostic Effect of Tumor Lymphocytic Infiltration in Resectable Non-Small-Cell Lung Cancer. J Clin Oncol 2016; 34(11): 1223–30.
22. Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 2011; 105(1): 93–103.
23. Liu H, Zhang T, Ye J, Li H, Huang J, Li X, et al. Tumor-infiltrating lymphocytes predict response to chemotherapy in patients with advance non-small cell lung cancer. Cancer Immunol Immunother 2012; 61(10): 1849–56.
24. Nakamura H, Saji H, Ogata A, Hosaka M, Hagiwara M, Kawasaki N, et al. Immunologic parameters as significant prognostic factors in lung cancer. Lung Cancer 2002; 37(2): 161–9.
25. Hiraoka K, Miyamoto M, Cho Y, Suzuoki M, Oshikiri T, Nakakubo Y, et al. Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer 2006; 94(2): 275–80.
26. Jackute J, Zemaitis M, Pranys D, Sitkauskiene B, Miliauskas S, Bajoriunas V, et al. The prognostic influence of tumor infiltrating Foxp3(+)CD4(+), CD4(+) and CD8(+) T cells in resected non-small cell lung cancer. J Inflamm (Lond) 2015; 12: 63.
27. Schalper KA, Brown J, Carvajal-Hausdorf D, McLaughlin J, Velcheti V, Syrigos KN, et al. Objective measurement and clinical significance of TILs in non-small cell lung cancer. J Natl Cancer Inst 2015; 107(3): dju435.
28. Dobrzanski MJ, Reome JB, Hylind JC, Rewers-Felkins KA. CD8-mediated type 1 antitumor responses selectively modulate endogenous differentiated and nondifferentiated T cell localization, activation, and function in progressive breast cancer. J Immunol 2006; 177(11): 8191–201.
29. Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T, et al. Predominant Infiltration of Macrophages and CD8+T Cells in Cancer Nests Is a Significant Predictor of Survival in Stage IV Nonsmall Cell Lung Cancer. Cancer 2008; 113(6): 1387–95.
30. Kirshberg S, Izhar U, Amir G, Demma J, Vernea F, Beider K, et al. Involvement of CCR6/CCL20/IL-17 axis in NSCLC disease progression. PLoS One 2011; 6: e24856.
31. Salih HR, Rammensee HG, Steinle A. Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol 2002; 169(8): 4098–102.
32. Wald O, Shapira OM, Izhar U. CXCR4/CXCL12 axis in non small cell lung cancer (NSCLC) pathologic roles and therapeutic potential. Theranostics 2013; 3(1): 26–33.
33. Kataki A, Scheid P, Piet M, Marie B, Martinet N, Martinet Y, et al. Tumor infiltrating lymphocytes and macrophages have a potential dual role in lung cancer by supporting both host-defense and tumor progression. J Lab Clin Med 2002; 140(5): 320–8.
34. Obeid JM, Wages NA, Hu Y, Deacon DH, Slingluff CL Jr. Heterogeneity of CD8+ tumor-infiltrating lymphocytes in non-small-cell lung cancer: impact on patient prognostic assessments and comparison of quantification by different sampling strategies. Cancer Immunol Immunother 2017; 66(1): 33–43.