Virtuelni brahijalni indeks gležnja – može li se predvideti neposredni ishod femorodistalne bajpas hirurgije?

  • Dragan B. Sekulić Military Medical Academy, Clinic for Vascular and Endovascular Surgery, Belgrade, Serbia
  • Aleksandar B. Tomić Military Medical Academy, Clinic for Vascular and Endovascular Surgery, Belgrade, Serbia; University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
  • Andreja Dimić University Clinical Center of Serbia, Clinic for Vascular and Endovascular Surgery, Belgrade, Serbia; University of Belgrade, Faculty of Medicine, Belgrade, Serbia
  • Aleksandar C. Mitrović University Clinical Center of Serbia, Clinic for Vascular and Endovascular Surgery, Belgrade, Serbia
  • Lazar B. Davidović University Clinical Center of Serbia, Clinic for Vascular and Endovascular Surgery, Belgrade, Serbia; University of Belgrade, Faculty of Medicine, Belgrade, Serbia
  • Dragana S. Paunović Military Medical Academy, Clinic for Vascular and Endovascular Surgery
  • Dalibor D. Nikolić University of Kragujevac, Faculty of Engineering Sciences, Kragujevac, Serbia
  • Uroš M. Miladinović Military Medical Academy, Institute for Radiology, Belgrade, Serbia
  • Igor M. Sekulić University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia; Military Medical Academy Institute for Radiology Belgrade, Serbia
  • Nemanja K. Rančić University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia; Military Medical Academy Institute for Radiology Belgrade, Serbia; Military Medical Academy Center for Clinical Pharmacology Belgrade, Serbia
  • Momir M. Šarac Military Medical Academy, Clinic for Vascular and Endovascular Surgery Belgrade, Serbia; University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
  • Ivan R. Marjanović Military Medical Academy, Clinic for Vascular and Endovascular Surgery Belgrade, Serbia; University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
  • Ivan R. Leković Military Medical Academy, Clinic for Vascular and Endovascular Surgery Belgrade, Serbia; University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
  • Boško I. Milev University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia; Military Medical Academy Clinic for General Surgery, Belgrade, Serbia
Ključne reči: arterije, okluzione bolesti, brahijalni indeks gležnja, angiografija, tomografska, kompjuterizovana, analiza konačnih elemenata, kompjuterski asistirano tumačenje slika, noga, prognoza, ultrasonografija

Sažetak


Uvod/Cilj. Najbolji način lečenja okluzije površne femoralne arterije je femorodistalni (FD) bajpas. Brahijalni indeks gležnja (BIG) i angiografija primenom metode multidetektorske kompjuterizovane tomografije (MDKT) predstavljaju „zlatni standard” u dijagnostici periferne okluzivne bolesti arterija. Analiza konačnih elemenata (AKE) može pomoći u merenju količine protoka krvi i arterijskog pritiska u arterijama donjih ekstremiteta. Cilj rada bio je da se ispita mogućnost korišćenja AKE u predviđanju ishoda FD bajpas hirurgije. Metode. Istraživanjem je obuhvaćeno 45 bolesnika kojima je indikovana FD arterijska rekonstrukcija u periodu od 01. decembra 2021. do 31. marta 2023. godine. Svakom bolesniku je preoperativno i postoperativno urađena angiografija arterija donjih ekstremiteta primenom MDKT, na osnovu koje su, uz korišćenje AKE, napravljeni modeli na kojima su mereni BIG. Svim bolesnicima su mereni BIG preoperativno i postoperativno, korišćenjem Doppler ultrazvuka i sfigmomanometra. Na osnovu preoperativne MDKT angiografije, korišćenjem metode AKE, napravljeni su postoperativni virtuelni hirurški modeli, na kojima su takođe mereni BIG. Vrednosti BIG raspoređene su u pet grupa: BIG meren preoperativno (BIG pre-op), BIG meren postoperativno (BIG post-op), BIG meren na modelima konačnih elemenata dobijenim primenom MDKT [BIG (sim) pre-op], BIG sim post-op, i BIG dobijen merenjem na virtuelnom hirurškom modelu [BIG sim post-op (virtual)]. Statistički su upoređivane vrednosti BIG dobijene na modelima sa vrednostima dobijenim merenjem na bolesnicima. Rezultati. Vrednosti dobijene na osnovu virtuelnih BIG modela nisu pokazale značajnu razliku u poređenju sa vrednostima dobijenim merenjem na bolesnicima i vrednostima dobijenim primenom AKE uz MDKT angiografiju (p < 0,001). Značajna statistička korelacija pokazana je između vrednosti virtuelnih BIG i vrednosti dobijenih primenom druge dve metode, merenim na postoperativnom modelu MDKT angiografije i na virtuelnom postoperativnom modelu (p < 0,001). Zaključak. Virtuelna simulacija parametara dobijenih primenom MDKT angiografije perifernih krvnih sudova može se uspešno koristiti za predviđanje neposrednog ishoda FD bajpas hirurgije

Biografija autora

Igor M. Sekulić, University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia; Military Medical Academy Institute for Radiology Belgrade, Serbia

 

 

Reference

Shammas NW. Epidemiology, classification, and modifiable risk factors of peripheral arterial disease. Vasc Health Risk Manag 2007; 3(2): 229–34.

Collins TC, Nelson D, Ahluwalia JS. Mortality following opera-tions for lower extremity peripheral arterial disease. Vasc Health Risk Manag 2010; 6: 287–96.

Chhetri PK, Thapa K. CT Angiography in Patients with Periph-eral Arterial Disease. J Coll Med Sci-Nepal 2020; 16(2): 78–82.

Filipović N, Milašinović D, Jagić N, Miloradović V, Hetteriche H, Rieber J. Numerical simulation of the flow field and mass transport pattern within the coronary artery. Comput Meth-ods Biomech Biomed Engin 2011; 14(4): 379–88.

Zhang H, Liu H, Dong Y, Wang J, Zao Y, Cui Y, et al. Low ca-rotid wall shear stress independently accelerates the progres-sion of cognitive impairment and white matter lesions in the elderly. Oncotarget 2017; 9(13): 11402–13.

Colombo M, Luraghi G, Cestariolo L, Ravasi M, Airoldi A, Chias-tra C, et al. Impact of lower limb movement on the hemody-namics of femoropopliteal arteries: A computational study. Med Eng Phys 2020; 81: 105–17.

Milašinović DZ, Sekulić DB, Nikolić DD, Vukićević AM, Tomić AP, Miladinović UM, et al. Virtual ABI: A computationally de-rived ABI index for noninvasive assessment of femoro-popliteal bypass surgery outcome. Comput Methods Programs Biomed 2021; 208: 106242.

Nikolić DD, Sekulić DB, MIlašinović DZ, Paunović DS, Sekulić IM, Saveljić IB, et al. Hemodynamics of Femoro-Popliteal “Bi-Pass” Surgery using FEA Methods. In: 2021 IEEE 21st Inter-national Conference on Bioinformatics and Bioengineering (BIBE), 2021: Kragujevac, Serbia; pp. 1–5.

Aboyans V, Criqui MH, Abraham P, Allison MA, Creager MA, Diehm C, et al. Measurement and Interpretation of the Ankle-Brachial Index. A Scientific Statement From the American Heart Association. Circulation 2012; 126(24): 2890–909.

Si H. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Trans Math Softw 2015; 41(2): Article No. 11; pp. 1–36.

Milašinović D, Vukićević A, Filipović N. Dfemtoolz: An open-source C ++ framework for efficient imposition of material and boundary conditions in finite element biomedical simula-tions. Comput Phys Commun 2020; 249: 106996.

Hwang JY. Doppler ultrasonography of the lower extremity ar-teries: anatomy and scanning guidelines. Ultrasonography 2017; 36(2): 111–9.

Rac-Albu M, Iliuta L, Guberna SM, Sinescu C. The role of ankle-brachial index for predicting peripheral arterial disease. Mae-dica (Bucur) 2014; 9(3): 295–302.

Hoek GA, Zwaknberg SR, Elders PJM, de Jong PA, Spiering W, Bartstra JW, et al. An elevated ankle-brachial index is not a valid proxy for peripheral medial arterial calcification. Athero-sclerosis 2021; 323: 13–9.

Burbelko M, Augsten M, Kalinowski MO, Heverhagen JT. Compar-ison of contrast-enhanced multi-station MR angiography and digital subtraction angiography of the lower extremity arterial disease. J Magn Reson Imaging 2013; 37(6): 1427–35.

Shareghi S, Gopal A, Gul K, Matchinson JC, Wong CB, Weinberg N, et al. Diagnostic accuracy of 64 multidetector computed tomographic angiography in peripheral vascular disease. Cath-eter Cardiovasc Interv 2010; 75(1): 23–31.

Zebari F, Amlani V, Langenskiöld M, Nordanstig J. Validation of an automated measurement method for determination of the ankle-brachial index. Scand Cardiovasc J 2022; 56(1): 73–8.

Zhang X, Gao Y, Huo B. Finite Element Analysis on Wall Fluid Shear Stress on Cells under Oscillatory Flow. Appl Sci 2021; 11(21): 10021.

Herschlag G, Gounley J, Roychowdhury S, Draeger EW, Randles A. Multi-physics simulations of particle tracking in arterial geom-etries with a scalable moving window algorithm. In: 2019 IEEE International Conference on Cluster Computing (CLUSTER), 2019; Albuquerque, NM (USA). pp. 1–11.

Athanasiou LS, Fotaidis DI, Michalis LK. Structure and Mechancal Behavior of Atherosclerotic Plaque. In: Athero-sclerotic Plaque Characterization Methods Based on Coronary Imaging. Academic Press; 2017; 181–98.

Sekulić DB, Tomić AP, Milašinović DZ, Nikolić DD, Paunović DS, Miladinović UM, et al. Haemodynamics of femoropopliteal by-pass surgery using finite element analysis method. Med čas 2021; 55(2): 66–70. (Serbian)

Objavljeno
2023/11/02
Rubrika
Originalni članak