Analiza razvoja bubrežne kore fetusa: indeks maturacije korteksa kao novi potencijalni vodič u proceni razvoja fetalne kore bubrega
Sažetak
Uvod/Cilj. Do sada, pažnja naučne javnosti bila je većinski usmerena ka morfometrijskoj analizi nefrogene zone (NZ) bubrežne kore fetusa, dok su izostali kvantifikacija i analiza maturacione zone (MZ) i drugih indikatora zrelosti bubrega. Cilj rada bio je da se ispitaju karakteristike sazrevanja korteksa bubrega fetusa, kao i da se predloži formiranje novog indeksa maturacije korteksa (IMK). Metode. U studiju su bila uključena 42 parafinska kalupa fetalnih bubrega, podeljeni prema gestacijskoj starosti (GS) u tri grupe. Posle bojenja uzoraka hematoksilinom i eozinom, analizirani su sledeći parametri: debljina NZ i MZ, površina bubrežnog telašca (BTp) i glomerularnog klupčeta (GKp), kao i maturacioni stadijumi glomerula. Dodatno, formiran je novi parametar, IMK, kao odnos između debljine NZ i MZ. Sakupljeni podaci su statistički obrađeni. Rezultati. Promene u debljini NZ i MZ bile su statistički značajne i u korelaciji sa GS. Vrednost IMK viša od 0,2 zabeležena je u uzorcima bubrega fetusa mlađih od 20. gestacijske nedelje (GN), dok je vrednost niža od 0,1 zabeležena u uzorcima bubrega fetusa starijih od 30. GN. Sa porastom GS u svim zonama bubrežnog korteksa smanjile su se vrednosti BTp i GKp. Statistički značajna redukcija GKp primećena je u najstarijoj grupi u jukstamedularnoj i intermedijarnoj zoni kore (p < 0,01). Glomeruli locirani u dubljim delovima kore pokazivali su veći stepen zrelosti od onih koji su bili locirani površnije. Zaključak. Izmereni parametri mogu poslužiti kao početna tačka za buduće studije koje bi analizirale histomorfološke karakteristike korteksa bubrega fetusa. U nedostatku kliničkih podataka, novoformirani parametar IMK može pomoći pri određivanju GS, s obzirom na to da značajno koreliše sa GS (p < 0,01).
Reference
Hall JE. Guyton and Hall textbook of medical physiology. 13th ed. Philadelphia: Elsevier; 2016. p. 323.
Nikolić I, Rančić G, Radenković G, Todorović V, Mitić D. Human embryology. Niš: Faculty of Medicine; 2004. p. 121–4. (Serbi-an)
Sadler TW. Langman’s medical embryology. 12th ed. Philadel-phia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012. p. 321–7.
Moore KL, Persaud TVN, Torchia MG. The developing human, clinically oriented embryology. 10th ed. Philadelphia: Elsevier; 2016. p. 243–9.
Dakovic-Bjelaković M, Vlajković S, Cukuranović R, Antić S, Bjela-ković G, Mitić D. Quantitative analysis of the nephron during human fetal kidney development. Vojnosanit Pregl 2005; 62(4): 281–6.
Petrović V, Nikolić I, Jović M, Živković V, Jocić M, Radenković G. Expression of collagen type IV in human kidney during prena-tal development. Vojnosanit Pregl 2022; 79(4): 318–24.
Daković-Bjelaković M, Vlajković S, Cukuranović R, Antić S, Bjela-ković G, Mitić D. Changes of the glomerular size during the human fetal kidney development. Srp Arh Celok Lek 2006; 134(1–2): 33–9. (Serbian)
Minuth WW. Key features of the nephrogenic zone in the fetal human kidney-hardly known but relevant for the detection of first traces impairing nephrogenesis. Cell Tissue Res 2019; 375(3): 589–603.
Morita M, Mii A, Yasuda F, Arakawa Y, Kashiwagi T, Shimizu A. Diverse Alterations of Glomerular Capillary Networks in Focal Segmental Glomerular Sclerosis. Kidney Int Rep 2022; 7(6): 1229–40.
Nagata M. Glomerulogenesis and the role of endothelium. Curr Opin Nephrol Hypertens 2018; 27(3): 159–64.
Iyengar A, Bonilla-Félix M. Effects of Prematurity and Growth Restriction on Adult Blood Pressure and Kidney Volume. Adv Chronic Kidney Dis 2022; 29(3): 243–50.
Fukunaga S, Fujita Y. Low glomerular number at birth can lead to the development of chronic kidney disease. Front Endo-crinol (Lausanne) 2023; 14: 1120801.
Hoogenboom LA, Wolfs TGAM, Hütten MC, Peutz-Kootstra CJ, Schreuder MF. Prematurity, perinatal inflammatory stress, and the predisposition to develop chronic kidney disease beyond oligonephropathy. Pediatr Nephrol 2021; 36(7): 1673–81.
Crump C. An overview of adult health outcomes after preterm birth. Early Hum Dev 2020; 150: 105187.
Ryan D, Sutherland MR, Flores TJ, Kent AL, Dahlstrom JE, Puelles VG, et al. Development of the Human Fetal Kidney from Mid to Late Gestation in Male and Female Infants. EBi-oMedicine 2018; 27: 275–83.
Macdonald MS, Emery JL. The late intrauterine and postnatal development of human renal glomeruli. J Anat 1959; 93(Pt 3): 331–40.
Barker DJ. In utero programming of chronic disease. Clin Sci (Lond) 1998; 95(2): 115–28.
Maringhini S, Corrado C, Maringhini G, Cusumano R, Azzolina V, Leone F. Early origin of adult renal disease. J Matern Fetal Neonatal Med 2010; 23(Suppl 3): 84–6.
Momtaz HE, Sabzehei MK, Rasuli B, Torabian S. The main eti-ologies of acute kidney injury in the newborns hospitalized in the neonatal intensive care unit. J Clin Neonatol 2014; 3(2): 99–102.
Becherucci F, Roperto RM, Materassi M, Romagnani P. Chronic kidney disease in children. Clin Kidney J 2016; 9(4): 583–91.
Solanke K, Bhatnagar R, Dibyajyoti B, Aseem T, Rishi P. To study the sequence of microscopic changes occurring during devel-opment of kidney in 12wk-35wk human fetuses. Int J Curr Res 2017; 9(8): 55808–13.
Pokarna DJ, Kshitija K, Saritha S. Determination of Histogene-sis of Human Kidney in Spontaneously Aborted Human Fe-tuses from 14 Weeks to 36 Weeks. In: Khan BA, editor. New Frontiers in Medicine and Medical Research Vol. 2. London: BP International; 2021. p. 149–56.
Tank KC, Saiyad SS, Pandya AM, Akbari VJ, Dangar KP. A study of histogenesis of human fetal kidney. Int J Biol Med Res 2012; 3(1): 1315–21.
Fanos V, Castagnola M, Faa G. Prolonging nephrogenesis in preterm infants: a new approach for prevention of kidney dis-ease in adulthood? Iran J Kidney Dis 2015; 9(3): 180–5.
Black MJ, Sutherland MR, Gubhaju L, Kent AL, Dahlstrom JE, Moore L. When birth comes early: effects on nephrogenesis. Nephrology (Carlton) 2013; 18(3): 180–2.
Minuth WW. Concepts for a therapeutic prolongation of nephrogenesis in preterm and low-birth-weight babies must correspond to structural-functional properties in the nephro-genic zone. Mol Cell Pediatr 2017; 4(1): 12.
Schell C, Wanner N, Huber TB. Glomerular development--shaping the multi-cellular filtration unit. Semin Cell Dev Biol 2014; 36: 39–49.
Li W, Hartwig S, Rosenblum ND. Developmental origins and functions of stromal cells in the normal and diseased mamma-lian kidney. Dev Dyn 2014; 243(7): 853–63.
Crobe A, Desogus M, Sanna A, Fraschini M, Gerosa C, Fanni D, et al. Decreasing podocyte number during human kidney in-trauterine development. Am J Physiol Renal Physiol 2014; 307(9): F1033–40.