Serotypes and resistance to antibiotics of Pseudomonas aeruginosa from wound swabs

  • Natasa S Stankovic Nedeljkovic Z C `Aleksinac`,Aleksinac

Sažetak


Abstract

 

Background/Aim. Wound infections caused by Pseudomonas aeruginosa (P.aeruginosa) usually occur after the violation of the skin or mucous membranes integrity. Infections are common in burnes, ulcus cruris or after surgical intervention. The objectives of the examination are analyze the presence of P.aeruginosa in wound swabs, antibiotic susceptibility testing, determination of minimum inhibitory concentrations (MICs) of antibiotics, production of metallo b-lactamase (MBLs), serotyping of isolates and analysis of the resistance of the most common serotypes. Methods. Examination was performed us prospective study in the Microbiological departament ZC''Aleksinac'' in Aleksinac since 2012 year. 90 hospital wound swabs and 55 outpatients were cultivated. Wound swabs were taken from patiences, who had a sign of wound infections. Susceptibility testing was performed by disk diffusion method according to CLSI system standards to: meropenem, imipenem, piperacillin-tazobactam, ceftazidime, cefepime, amikacin, gentamicin, netilmicin, ofloxacin, ciprofloxacin and colistin (Himedia). Determination of MICs was performed by the manufacturer's tape (Liofilchem). MBLs production was determined by disks of imipenem and imipenem with ethylene diamine tetraacetic acid. Polyvalent and monovalent antisera for agglutination (Biorad) were used in the agglutination. Result. P.aeruginosa was isolated from 36.55% wound swabs (36.66% of the nosocomial wounds and 36.36% of outpatients). The most of patiences from whose wounds P.aeruginosa was cultivated had diagnosis ulcus cruris (84%). Analyzed isolates showed the highest degree of sensitivity to colistin (100%), meropenem (93.44%) and imipenem (86.7%), and were the most resistant to cefepime (19.54%). The majority of nosocomial isolates had MICs for piperacillin-tazobactam 12µg/ml (28.57%), and ambulatory 16µg/ml (28.57%). The most common value of MICs for ciprofloxacin for hospital isolates was 0.19µg/ml (31.81%), and outpatient 0.25µg/ml (28.57%). The most common MICs for amikacin of isolates with hospital origin was 6µg/ml (40.9%), and outpatient 4µg/ml (33.33%). Five isolates (9.43%) produced a MBLs (10% of nosocomial isolates and 9.09% of ambulatory). Serotypes P1, P3, P4, P6, P10 and P11 were serologically identified. The most common serotypes were P11 (22.64%), P6 (15.09%) and O1 (11.32%). Conclusion. Analyzed isolates had the highest degree of sensitivity to colistin, meropenem and imipenem, and least to cefepime. Most often serotypes were P11, P6 and P1. Presence of P. aeruginosa in wound cultures and antibiotic resistance in nosocomial isolates compared to outpatient were the similar. This is explained by the specific organisation of the Surgeon’s department, spatially related surgical ward and surgical ambulant, for the same staff and bandaging material sterilizes in one place.

Key words: Pseudomonas aeruginosa, wound, resistance, antibiotics, MICs, serotyping

 

Apstrakt

 

Uvod/Cilj. Infekcije rana izazvane Pseudomonas aeruginosa (P.aeruginosa) uglavnom nastaju nakon narušavanja integriteta kože ili sluzokoža. Česte su kod opekotina, ulcus cruris ili nakon hirurških intervencija. Ciljevi ispitivanja su analiza prisustva P.aeruginosa u brisevima rana, ispitivanje osetljivosti na antibiotike, određivanje minimalne inhibitorne koncentracije na antibiotike (MIK), ispitivanje produkcije metalo b-laktamaza (MBL), serotipizacija izolata i analiza rezistencije najčešćih serotipova. Metode. Ispitivanje je sprovedeno kao prospektivna studija u Mikrobiološkoj službi ZC’’Aleksinac’’ u Aleksincu tokom 2012.god. Kultivisana su 90 bolnički i 55 ambulantno uzorkovana brisa rana. Brisevi su uzimani kod bolesnika, koji su imali znake infekcije rana. Ispitivanje osetljivosti na antibiotike je vršeno disk difuzionom metodom po standardima CLSI sistema na: meropenem, imipenem, piperacillin-tazobactam, ceftazidim, cefepim, amikacin, gentamicin, netilmicin, ofloxacin, ciprofloxacin i kolistin (Himedia). Određivanje MIC-a je vršeno po uputstvu proizvođača traka (Liofilchem). Produkcija MBL je određivana diskovima imipenema i imipenema sa etilen diamin tetrasirćetnom kiselinom. U aglutinaciji P.aeruginosa su korišćeni polivalentni i monovalentni serumi za aglutinaciju (Biorad). Rezultat. P.aeruginosa je izolovan iz 36.55% briseva rana (36.66% rana bolničkog porekla i 36.36% ambulantnog). Najveći broj bolesnika kod kojih je kultivisan P.aeruginosa je imalo dijagnozu ulcus cruris (84%). Analizirani izolati pokazali su najveći stepen osetljivosti na kolistin (100%), meropenem (93.44%) i imipenem (86.7%), a najmanji na cefepim (19.54%). Najveći broj izolata bolničkog porekla je imao MIK za piperacilin-tazobaktam 12 µg/ml (28.57%), a ambulantnog 16 µg/ml (28.57%). Najčešća vrednost MIK za ciprofloksacin kod bolničkih izolata je 0.19 µg/ml (31.81%), a ambulantnih 0.25 µg/ml (28.57%). Najčešći MIK za amikacin kod izolata bolničkog porekla je 6 µg/ml (40.9%), a ambulantnog 4 µg/ml (33.33%). Pet izolata (9.43%) je produkovalo MBL (10% izolata bolničkog porekla i 9.09% ambulantnog). Serološki su identifiokvani serotipovi: P1, P3, P4, P6, P10 i P11. Najprisutniji su serotipovi P11 (22.64%), P6 (15.09%) i P1(11.32%). Zaključak. Analizirani izolati su pokazali najveći stepen osetljivosti na kolistin, meropenem i imipenem, a najmanji na cefepim. Najčešće izolovani serotipovi su P11, P1 i P6. Nije uočeno veće prisustvo P.aeruginosa u brisevima rana, niti rezistencija na antibiotike kod izolata bolničkog porekla u odnosu na ambulantne. Ovo se objašnjava specifičnom organizacijom Hirurškog odseka, jer su prostorno povezani Hirurško odeljenje i ambulanta, radi isto osoblje i zavojni materijal se steriliše na jednom mestu.

Ključne reči: Pseudomonas aeruginosa, rana, rezistencija, antibiotici, MIK, serotipizacija

 

 

 

 

 

 

Biografija autora

Natasa S Stankovic Nedeljkovic, Z C `Aleksinac`,Aleksinac
bakteriologija prim

Reference

Severino P, Magalhaes DV. The role of integrons in the dissemination of antibiotic resistance among clinical isolates of Pseudomonas aeruginosa from intensive care unit in Brazil. Research in Microbiology 2002;Vol. 153, Issue 4: 221-22.

Loughlin MF, Jones V, Lambert PA. Pseudomonas aeruginosa cells adapted to benzalkonium chloride show resistance to other membrane-active agents but not to clinically relevant antibiotics. Journal of Antimicrobial Chemotherapy 2002; 49: 631-639.

Li L, Ledizet M, Kar K, Koski AR, Kazmierczak IB. An indirect enzyme-linked immunosorbent assay for rapid and quantitative assessment of Type III virulence phenotypes of Pseudomonas aeruginosa isolates. Annals of Clinical Microbiology and Antimicrobials 2005; 4:22 doi:10.1186/1476-0711-4-2.

Worgall S, Krause A, Qiu J P, Joh J,Hackett R N et al. Protective Immunity to Pseudomonas aeruginosa Induced with a Capsid-Modified Adenovirus Expressing P. aeruginosa Opr F. Journal of Virology 2007; Vol. 81: 2413801-13808.

Perumal D, Lim CS, Chow TKV, Kishore A, Sakharkar R et al. A combined computational-experimental analyses of selected metabolic enzymes in Pseudomonas species. Int J Biol Sci 2008; 4:309-317.

Ramsey D M, Wozniak DJ. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infection in cystic fibrosa. Mol Microbiol 2005; 56, 309-322.

Stoodley P et al. Biofilms as coplex differentiated communitis. Annu Rev Microb 2002, 56, 187-209.

Sugawara E et al. Pseudomonas aeruginosa prin OprF exists in two different conrfirmations. J Biol Chem 2006, 281, 16220-16229.

O'May YC, Sanderson K, Roddam FL, Kirov MS. Iron binding compounds impair Pseudomonas aeruginosa biofilm formation, escepetiallu under anaerobic condition. Microbiology 2009; 58: 765-773.

Hancock R E. The Pseudomonas aeruginosa outer membrane permeability burrier and how to overcome it. Antibiot Chemother 1985, 36,95-102.

Ninane G, Harper PB. The in vitro activity of ceftazidime against a multi-resistant serotype 12 Pseudomonas aeruginosa. Infection 1983; Vol. 11, Supplement - 1

Jamasbi JR. Frequency and Distribution of Pseudomonas. Journal of Bacteriology 2002; Vol. 184, No. 13: 3614-3622.

Al-Dujaili HM. Harris D. Evaluation of commercially available antisera for erotyping of Pseudomonas aeruginosa. J. Clin. Path 1974; 27: 569-571.

Balkum van A, Tassios PT, Dijkschoorn L, Haeggman S, Caksoon B at all. Guidelines for the validation and application of typing methods for use in bacterioal epidemiology. Clinical microbiology and infectiosus disease 2007, 13 (suppl. 3) 1-46.

Smith S. Ganiyi O, John R, Fowora M, Akunsinde K, Odeigah P. Antimicrobial Resistence and Molecular Typing of Pseudomonas aeruginosa isolated from Surgical Wounds in Lagos, Nigeria. Acta Medica Iranica 2012; vol.50, No. 6.

Adediran S G, Dauplaise D J, Kasten K R, Tschöp J, Dattilo J. Goetzman J. Early infection during burn-induced inflammatory response results in increased mortality and p38-mediated neutrophil dysfunction.Am J Physiol Regul Integr Comp Physiol 2010 Sep; 299(3):R918-25.

Sardelić S. Metalo--laktamaze u kliničkih sojeva Pseudomonasa aeruginose otpornih na karbapenematske antibiotike. Doktorska disertacija, Sveučilište u Zagrebu. Središnja medicinska knjižnica (2010.).

Gužvinec M, Butić I, Jelić M, Bukovski S, Lucić S, Tumbić Andrašević A. Rezistencija na antibiotike u bakterije Pseudomonas aeruginosa. Infektološki glasnik 2012;1232:2, 71–80.

Bush K, Sykes RB. Characterization and epidemiology of β-lactamases. Elsevier Science Publishers BV1987, Philadelphia, PA.

B.Karakašević. Priručnik standardnih metoda za mikrobiološi rutinski rad. Beograd-Zagreb. Medicinska knjiga. Medicinska knjiga;1967 (Serbian).

Clinical and Laboratory Standards Institute (CLSI). 2012. Methods for Dilution Antimicrobial Suspectibility tests for bacteria That Grow Aerobicaly, Approved Standars-ninth edition. Clinical and Laboratory Standards Institute, Wayne.

Al-Dujaili HM. Harris D. Evaluation of commercially available antisera for serotyping of Pseudomonas aeruginosa. J. Clin. Path 1974; 27: 569-571.

Blanc DS, Petignat C, Janin B, Bille J, Francioli P. Frequency and molecular diversity of Pseudomoas aeruginosa upon admission and during hospitalisation: a prospective epidemiologic study. Clin Microbiol Infect 1998;4(5):242-7.

Navon-Veneia S, Ben-Ami R, Carmeli Y. Update on Pseudomonas aeruginosa and Acinetobacter baummani infections in the haelthcare setting. Cur Opin Infect Dis 2005;18(4) 306-13.

http://www.bbc.co.uk/news/health-16645957

http://www.cdc.gov/hai/organisms/pseudomonas.htmlCDC.

http://www.minzdravlja.info/downloads/2011/Oktobar/Oktobar2011NacionalnaStudijaPrevalencijeBolnickihInfekcijaProfdrLjiljanaMarkovicDenic.pdf.

Persson A E. Study of Pseudomonas aeruginosa and different wound dressing products. Master of Science Thesis. Deparment of Science and Biological Engineering. Chalmers university of technology. 2010.

Milić DJ, Živić SS, Bogdanović DC, Golubović ZV. Risk factors related to the failure of venous leg ulcers to heal with compression treatment. Journal of vascular sugery 2009. 49: p1242-47.

Ranjan K P, Ranjan N, Bansal S K,D R Arora. Prevalence of Pseudomonas aeruginosa in Post-operative Wound Infection in a Referral Hospital in Haryana, India J Lab Physicians 2011; 3(2): 129.

Sivanmaliappan S, Sevana M. Antimicrobial Susceptibility Patterns of Pseudomonas aeruginosa from Diabetes Patients with Foot Ulcers. International Journal of Microbiology 2011; doi:10.1155/2011

Sievert DM, Ricks P, Edwards AS, Patel J, Srinivasan A et all. Antimicrobial-Resistant Pathogens Associated with Healthcare-Infecttions: Summary of Data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infection Control and Hospital Epidemiol. Vol. 34, No. 1, January 2013

Salimi H. Yakhchali B, Owlia P. Lari A R. Molecular Epidemiology and Drug Susceptibility of Pseudomonas aeruginosa Strains Isolated From Burn Patients. LabMedicine 2010; 41, 540-544

Gjødsbøl K, Christensen JJ, Karlsmark T, Jørgensen B, Klein B M, Krogfelt K. A Multiple bacterial species reside in chronic wounds: a longitudinal study.International Wound Journal 2006; Vol. 3, no. 3, pp. 225-231.

Yousefi S, Nahaei M, Farajnia S, Aghazadeh M, Iversen A,Edquist P. A multiresistant clone of Pseudomonas aeruginosa sequence type 773 spreading in a burn unit in Orumieh, Iran. Acta pathologica, microbiologica et immunologica Scandinavica 2012. Vol 120, DOI: 10.1111/j.1600-0463.2012.02948.

Higins PG, Fhuit AC, Milatovic D, Verhoef J, Schmitz FJ. Antimicrobial suspectibility of imipenem-resistant Pseudomonas aeruginosa. J Antimicrob Chemother 2002; 50:299-301.

Engler K, Mühlemann K, Garzoni C, Pfahler H, Geiser T, von Garnier C. Colonisation with Pseudomonas aeruginosa and antibiotic resistance patterns in COPD patients. Swiss Med Wkly 2012 Jan 30;142:0.

Lepšanović Z, Libisch B.Tomanović B, Nonković Z, Balogh B. Fuzi M.Characterisation of the first VIM metallolactamasae-producing Pseudmonas aeruginosa clinical isolates in Serbia. Acta microbiologica et immunologica hungarica 2008; vol.55, n4, pp. 447-454.

Jovcic B, Vasiljevic Z, Djukic S, Topisirovic Lj, Kojic M. Emergence of VIM-2 metallo-β-lactamase-producing Pseudomonas aeruginosa isolates in a paediatric hospital in Serbia. J Med Microbiol. February 2005 vol. 54 no. 2 101-111.

Bošnjak Z, Benedić B, Mazzariol A, Jarža-Davila N, Šuto S, Klaenić S: VIM-2 metallo--lactamase in Pseudomonas aeruginosa isolates from Zagreb, Croatia. Scand J Infect Dis 2010; 42:193-197.

Gutierez O, Juan C, Cercenado E, Navarro F, Bouza E, Coll P, Perez JL, Oliver A. Molecular epidemiology and mechanismus of carbapenem resistence in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob Agents Chemother 2007;51:4329-35.

Giakkoupi P, Petrikkos G, Tzouvelekis LS, Tsonas S, Legakis NJ, Vatopulis AC. Spread of integron-associated strains in Greek Hospitals. J Clin Microbiol 2003;41:822-5.

Pournaras S, Maniati M. Petinaki E, Tzouvelekis A, Legakis NJ, Maniatis AN. Hospital outbreak of multiple clones of Pseudomonas aeruginosa, carrying the unrelated metallo--lactamase gene variants blaVIM-1 and blaVIM-2. J Clin Microbiol 2003;51:1409-14.

Pitout JD, Chow BL, Gregson KB, Elsayed S, Church DL. Molecular epidemiology of metallo -lactamase-producing Pseudomonas aeruginosa in the Calgary Health Region:emergence of VIM-2-producing isolates. J Clin Microbiol 2007; 45:294-8

Tomanović B, Jokovic B, Tatić M, Mirović V, Nanusević O. Serotyping and pyocin typing of Pseudomonas aeruginosa in a study of intrahospital infections. Vojnosanitski Pregled 1991; Vol. 48 Issue 1 (Serbian).

Premru M M, Gubina M. Serotype, Antimicrobial Susceptibility and Clone Distribution of Pseudomonas aeruginosa in a University Hospital Zentralblatt für Bakteriologie 2000; Vol 289, Issue 8, January, p 857-867.

Objavljeno
2015/11/02
Rubrika
Originalni članak