Multiparametrijski strukturni slikovni biomarkeri ranih promena mikrostrukture bele mase tokom i nakon hemoradioterapije glioblastoma: difuziono tenzorsko snimanje i difuziono snimanje kurtoze
Sažetak
Uvod/Cilj. Prepoznavanje ranih promena izazvanih zračenjem u beloj masi je od velike važnosti. Cilj rada bio je da se ispita moguća primena parametara difuzionog tenzorskog snimanja (diffusion tensor imaging - DTI) i difuzionog snimanja kurtoze (diffusion kurtosis imaging - DKI) kao biomarkera ranih promena mikrostrukture moždanog tkiva, tokom lečenja novodijagnostikovanog glioblastoma hemioradioterapijom (HRT). Metode. Ukupno 42 bolesnika obolela od glioblastoma, koji su posle hirurške resekcije/biopsije podvrgnuti HRT, snimljena su tri puta magnetnom rezonancom (MR): pre terapije, posle 16 frakcija i posle 33 frakcije. Regioni od interesa (ROI), sa ukupnim dozama zračenja od 59,4 Gy (ROI 1), 39,6 Gy (ROI 2) i 19,8 Gy (ROI 3), identifikovani su korišćenjem koregistrovanih aksijalnih planova raspodele doze/histograma zapremine doze i snimaka MR. Za svaki ROI izračunati su, izmereni i analizirani sledeći DTI parametri: frakciona anizotropija (FA), radijalna difuzivnost (RD), aksijalna difuzivnost (AD) i srednja difuzivnost (SD). Odgovarajući DKI parametri uključivali su: radijalnu kurtozu (RK), aksijalnu kurtozu (AK) i srednju kurtozu (SK). Rezultati. Značajno smanjenje vrednosti FA utvrđeno je u ROI 1 (ukupna isporučena doza 59,4 Gy) posle isporučenih 16 i 33 frakcija, dok su ostali parametri DTI i SK pokazali značajno povećanje. U ROI 1 utvrđen je opadajući trend RK i AK, koji je potvrđen statistički i posle 16 i posle 33 isporučene frakcije. U ROI 2 (ukupna isporučena doza 39,6 Gy), vrednost FA bila je značajno smanjena i posle 16 i posle 33 frakcije, dok su RD, AD, SD i SK bili povećani posle 16 frakcija, a potom smanjeni posle 33 frakcije. Vrednost RK u ROI 2 pokazala je značajno smanjenje nakon 16 i 33 frakcije, a u vrednostima AK nisu ustanovljene promene. U ROI 3 (ukupna isporučena doza 19,8 Gy) nisu primećene značajne promene ni u jednom od izmerenih DTI ili DKI parametara. Zaključak. Metrički parametri DTI i DKI mogu poslužiti kao biomarkeri ranih promena tokom i posle HRT, obezbeđujući informacije koje pružaju bolje razumevanje složene dinamike ranih promena mikrostrukture bele mase, kao odgovor na HRT glioblastoma.
Reference
Stupp R, Hegi ME, Gilbert MR, Chakravarti A. Chemoradio-therapy in malignant glioma: standard of care and future direc-tions. J Clin Oncol 2007; 25(26): 4127–36. DOI: 10.1200/JCO.2007.11.8554.
Hanna C, Lawrie TA, Rogozińska E, Kernohan A, Jefferies S, Bul-beck H, et al. Treatment of newly diagnosed glioblastoma in the elderly: a network meta-analysis. Cochrane Database Syst Rev 2020; 3(3): CD013261. DOI: 10.1002/14651858.CD013261.pub2.
Qi D, Li J, Quarles CC, Fonkem E, Wu E. Assessment and pre-diction of glioblastoma therapy response: challenges and op-portunities. Brain 2023; 146(4): 1281–98. DOI: 10.1093/brain/awac450.
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, et al. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25(5): 2529. DOI: 10.3390/ijms25052529.
De Groot JD, van Dijken BRJ, van der Weide HL, Enting RH, van der Hoorn A. Voxel based morphometry-detected white matter volume loss after multi-modality treatment in high grade gli-oma patients. PLoS One 2023; 18(5): e0275077. DOI: 10.1371/journal.pone.0275077.
Rafanan J, Ghani N, Kazemeini S, Nadeem-Tariq A, Shih R, Vida TA. Modernizing Neuro-Oncology: The Impact of Imaging, Liquid Biopsies, and AI on Diagnosis and Treatment. Int J Mol Sci 2025; 26(3): 917. DOI: 10.3390/ijms26030917.
Nagesh V, Tsien CI, Chenevert TL, Ross BD, Lawrence TS, Junick L, et al. Radiation-induced changes in normal-appearing white matter in patients with cerebral tumors: a diffusion tensor im-aging study. Int J Radiat Oncol Biol Phys 2008; 70(4): 1002–10. DOI: 10.1016/j.ijrobp.2007.08.020.
Zakharova NE, Batalov AI, Pogosbekian EL, Chekhonin IV, Goryaynov SA, Bykanov AE, et al. Perifocal Zone of Brain Gli-omas: Application of Diffusion Kurtosis and Perfusion MRI Values for Tumor Invasion Border Determination. Cancers (Basel) 2023; 15(10): 2760. DOI: 10.3390/cancers15102760.
Friedrich M, Farrher E, Caspers S, Lohmann P, Lerche C, Stoffels G, et al. Alterations in white matter fiber density associated with structural MRI and metabolic PET lesions following multimodal therapy in glioma patients. Front Oncol 2022; 12: 998069. DOI: 10.3389/fonc.2022.998069.
Lohmeier J, Radbruch H, Brenner W, Hamm B, Hansen B, Tietze A, et al. Detection of recurrent high-grade glioma using mi-crostructure characteristics of distinct metabolic compart-ments in a multimodal and integrative 18F-FET PET/fast-DKI approach. Eur Radiol 2024; 34(4): 2487–99. DOI: 10.1007/s00330-023-10141-0.
Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 2003; 4(6): 469–80. DOI: 10.1038/nrn1119.
Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001; 13(4): 534–46. DOI: 10.1002/jmri.1076
Le Bihan D, Iima M. Diffusion Magnetic Resonance Imaging: What Water Tells Us about Biological Tissues. PLoS Biol 2015; 13(7): e1002203. Erratum in: PLoS Biol 2015; 13(9): e1002246. DOI: 10.1371/journal.pbio.1002246.
Lin L, Bhawana R, Xue Y, Duan Q, Jiang R, Chen H, et al. Comparative Analysis of Diffusional Kurtosis Imaging, Diffu-sion Tensor Imaging, and Diffusion-Weighted Imaging in Grading and Assessing Cellular Proliferation of Meningiomas. AJNR Am J Neuroradiol 2018; 39(6): 1032–8. DOI: 10.3174/ajnr.A5662.
Henssen D, Meijer F, Verburg FA, Smits M. Challenges and op-portunities for advanced neuroimaging of glioblastoma. Br J Radiol 2023; 96(1141): 20211232. DOI: 10.1259/bjr.20211232.
Brancato V, Nuzzo S, Tramontano L, Condorelli G, Salvatore M, Cavaliere C. Predicting Survival in Glioblastoma Patients Us-ing Diffusion MR Imaging Metrics-A Systematic Review. Cancers (Basel) 2020; 12(10): 2858. DOI: 10.3390/cancers12102858.
Manan AA, Yahya NA, Taib NHM, Idris Z, Manan HA. The Assessment of White Matter Integrity Alteration Pattern in Patients with Brain Tumor Utilizing Diffusion Tensor Imag-ing: A Systematic Review. Cancers (Basel) 2023; 15(13): 3326. DOI: 10.3390/cancers15133326.
Scola E, Del Vecchio G, Busto G, Bianchi A, Desideri I, Gadda D, et al. Conventional and Advanced Magnetic Resonance Imag-ing Assessment of Non-Enhancing Peritumoral Area in Brain Tumor. Cancers (Basel) 2023; 15(11): 2992. DOI: 10.3390/cancers15112992.
Witzmann K, Raschke F, Troost EGC. MR Image Changes of Normal-Appearing Brain Tissue after Radiotherapy. Cancers (Basel) 2021; 13(7): 1573. DOI: 10.3390/cancers13071573.
Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffu-sional kurtosis imaging: the quantification of non-gaussian wa-ter diffusion by means of magnetic resonance imaging. Magn Reson Med 2005; 53(6): 1432–40. DOI: 10.1002/mrm.20508.
Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 2010; 23(7): 698–710. DOI: 10.1002/nbm.1518.
Tabesh A, Jensen JH, Ardekani BA, Helpern JA. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med 2011; 65(3): 823–36. Erratum in: Magn Reson Med 2011; 65(5): 1507. DOI: 10.1002/mrm.22655
Wu EX, Cheung MM. MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed 2010; 23(7): 836–48. DOI: 10.1002/nbm.1506.
Goryawala M, Mellon EA, Shim H, Maudsley AA. Mapping early tumor response to radiotherapy using diffusion kurtosis imag-ing. Neuroradiol J 2023; 36(2): 198–205. DOI: 10.1177/19714009221122204.
Van Cauter S, Veraart J, Sijbers J, Peeters RR, Himmelreich U, De Keyzer F, et al. Gliomas: diffusion kurtosis MR imaging in grading. Radiology 2012; 263(2): 492–501. DOI: 10.1148/radiol.12110927.
Van Cauter S, De Keyzer F, Sima DM, Sava AC, D'Arco F, Veraart J, et al. Integrating diffusion kurtosis imaging, dynam-ic susceptibility-weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas. Neuro Oncol 2014; 16(7): 1010–21. DOI: 10.1093/neuonc/not304.
Abdalla G, Dixon L, Sanverdi E, Machado PM, Kwong JSW, Panovska-Griffiths J, et al. The diagnostic role of diffusional kurtosis imaging in glioma grading and differentiation of glio-mas from other intra-axial brain tumours: a systematic review with critical appraisal and meta-analysis. Neuroradiology 2020; 62(7): 791–802. DOI: 10.1007/s00234-020-02425-9.
Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin 2020; 70(4): 299–312. DOI: 10.3322/caac.21613.
Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol 2020; 22(8): 1073–113. DOI: 10.1093/neuonc/noaa106.
Wang YX, King AD, Zhou H, Leung SF, Abrigo J, Chan YL, et al. Evolution of radiation-induced brain injury: MR imaging-based study. Radiology 2010; 254(1): 210–8. DOI: 10.1148/radiol.09090428.
Suh CH, Kim HS, Jung SC, Choi CG, Kim SJ. Multiparametric MRI as a potential surrogate endpoint for decision-making in early treatment response following concurrent chemoradio-therapy in patients with newly diagnosed glioblastoma: a sys-tematic review and meta-analysis. Eur Radiol 2018; 28(6): 2628–38. DOI: 10.1007/s00330-017-5262-5.
Şahin S, Ertekin E, Şahin T, Özsunar Y. Evaluation of normal-appearing white matter with perfusion and diffusion MRI in patients with treated glioblastoma. Magn Reson Mater Phy 2022; 35(1): 153–62. DOI: 10.1007/s10334-021-00990-5.
Andrews RN, Dugan GO, Peiffer AM, Hawkins GA, Hanbury DB, Bourland JD, et al. White Matter is the Predilection Site of Late-Delayed Radiation-Induced Brain Injury in Non-Human Primates. Radiat Res 2019; 191(3): 217–31. DOI: 10.1667/RR15263.1.
Pan J, Qiu Z, Fu G, Liang J, Li Y, Feng Y, et al. Non-complete recovery of temporal lobe white matter diffusion metrics at one year Post-Radiotherapy: Implications for Radiation-Induced necrosis risk. Radiother Oncol 2024; 199: 110420. DOI: 10.1016/j.radonc.2024.110420.
Hope TR, Vardal J, Bjørnerud A, Larsson C, Arnesen MR, Salo RA, et al. Serial diffusion tensor imaging for early detection of radiation-induced injuries to normal-appearing white matter in high-grade glioma patients. J Magn Reson Imaging 2015; 41(2): 414–23. DOI: 10.1002/jmri.24533.
Tringale KR, Nguyen T, Bahrami N, Marshall DC, Leyden KM, Karunamuni R, et al. Identifying early diffusion imaging bi-omarkers of regional white matter injury as indicators of exec-utive function decline following brain radiotherapy: A pro-spective clinical trial in primary brain tumor patients. Radi-other Oncol 2019; 132: 27–33. DOI: 10.1016/j.radonc.2018.11.018.
Rydelius A, Bengzon J, Engelholm S, Kinhult S, Englund E, Nilsson M, et al. Predictive value of diffusion MRI-based parametric response mapping for prognosis and treatment response in gli-oblastoma. Magn Reson Imaging 2023; 104: 88–96. DOI: 10.1016/j.mri.2023.09.005.
Raschke F, Wesemann T, Wahl H, Appold S, Krause M, Linn J, et al. Reduced diffusion in normal appearing white matter of gli-oma patients following radio(chemo)therapy. Radiother Oncol 2019; 140: 110–5. DOI: 10.1016/j.radonc.2019.06.022
Witzmann K, Raschke F, Wesemann T, Löck S, Funer F, Linn J, et al. Diffusion decrease in normal-appearing white matter structures following photon or proton irradiation indicates differences in regional radiosensitivity. Radiother Oncol 2024; 199: 110459. DOI: 10.1016/j.radonc.2024.110459.
Ljusberg A, Blystad I, Lundberg P, Adolfsson E, Tisell A. Radia-tion-dependent demyelination in normal appearing white mat-ter in glioma patients, determined using quantitative magnetic resonance imaging. Phys Imaging Radiat Oncol 2023; 27: 100451. DOI: 10.1016/j.phro.2023.100451.
Zhu T, Chapman CH, Tsien C, Kim M, Spratt DE, Lawrence TS, et al. Effect of the Maximum Dose on White Matter Fiber Bundles Using Longitudinal Diffusion Tensor Imaging. Int J Radiat Oncol Biol Phys 2016; 96(3): 696–705. DOI: 10.1016/j.ijrobp.2016.07.010.
Connor M, Karunamuni R, McDonald C, White N, Pettersson N, Moiseenko V, et al. Dose-dependent white matter damage after brain radiotherapy. Radiother Oncol 2016; 121(2): 209–16. DOI: 10.1016/j.radonc.2016.10.003.
Djan I, Petrović B, Erak M, Nikolić I, Lucić S. Radiotherapy treatment planning: benefits of CT-MR image registration and fusion in tumor volume delineation. Vojnosanit Pregl 2013; 70(8): 735–9. DOI: 10.2298/vsp110404001d.
Cabrera AR, Kirkpatrick JP, Fiveash JB, Shih HA, Koay EJ, Lutz S, et al. Radiation therapy for glioblastoma: Executive sum-mary of an American Society for Radiation Oncology Evi-dence-Based Clinical Practice Guideline. Pract Radiat Oncol 2016; 6(4): 217–25. DOI: 10.1016/j.prro.2016.03.007.
Kruser TJ, Bosch WR, Badiyan SN, Bovi JA, Ghia AJ, Kim MM, et al. NRG brain tumor specialists consensus guidelines for glioblastoma contouring. J Neurooncol 2019; 143(1): 157–66. DOI: 10.1007/s11060-019-03152-9.
Niyazi M, Andratschke N, Bendszus M, Chalmers AJ, Erridge SC, Galldiks N, et al. ESTRO-EANO guideline on target delinea-tion and radiotherapy details for glioblastoma. Radiother On-col 2023; 184: 109663. DOI: 10.1016/j.radonc.2023.109663.
Mir R, Kelly SM, Xiao Y, Moore A, Clark CH, Clementel E, et al. Organ at risk delineation for radiation therapy clinical tri-als: Global Harmonization Group consensus guidelines. Radi-other Oncol 2020; 150: 30–9. DOI: 10.1016/j.radonc.2020.05.038.
Hansen B. An Introduction to Kurtosis Fractional Anisotropy. Am J Neuroradiol 2019; 40(10): 1638–41. DOI: 10.3174/ajnr.A6235.
Weller M, Pfister SM, Wick W, Hegi ME, Reifenberger G, Stupp R. Molecular neuro-oncology in clinical practice: a new hori-zon. Lancet Oncol 2013; 14(9): e370–9. Erratum in: Lancet Oncol 2015; 16(5): e199. DOI: 10.1016/S1470-2045(15)70216-0.
Chakhoyan A, Woodworth DC, Harris RJ, Lai A, Nghiemphu PL, Liau LM, et al. Mono-exponential, diffusion kurtosis and stretched exponential diffusion MR imaging response to chemoradiation in newly diagnosed glioblastoma. J Neuroon-col 2018; 139(3): 651–9. DOI: 10.1007/s11060-018-2910-9.
Zheng Z, Wang B, Zhao Q, Zhang Y, Wei J, Meng L, et al. Re-search progress on mechanism and imaging of temporal lobe injury induced by radiotherapy for head and neck cancer. Eur Radiol 2022; 32(1): 319–30. DOI: 10.1007/s00330-021-08164-6.
Voon NS, Lau FN, Zakaria R, Md Rani SA, Ismail F, Manan HA, et al. MRI-based brain structural changes following radi-otherapy of Nasopharyngeal Carcinoma: A systematic review. Cancer Radiother 2021; 25(1): 62–71. DOI: 10.1016/j.canrad.2020.07.008.
Xie X, Feng M, Rong Y, Hu J, Zhou W, Li Y, et al. Whole brain atlas-based diffusion kurtosis imaging parameters for the eval-uation of multiple cognitive-related brain microstructure inju-ries after radiotherapy in lung cancer patients with brain me-tastasis. Quant Imaging Med Surg 2023; 13(8): 5321–32. DOI: 10.21037/qims-22-1376.
Genç B, Aslan K, Özçağlayan A, İncesu L. Microstructural ab-normalities in the contralateral normal-appearing white matter of glioblastoma patients evaluated with advanced diffusion imaging. Magn Reson Med Sci 2024; 23(4): 479–86. DOI: 10.2463/mrms.mp.2023-0054.
He L, Chen M, Li H, Shi X, Qiu Z, Xu X. Differentiation be-tween high-grade gliomas and solitary brain metastases based on multidiffusion MRI model quantitative analysis. Front On-col 2024; 14: 1401748. DOI: 10.3389/fonc.2024.1401748.
Rübe CE, Raid S, Palm J, Rübe C. Radiation-Induced Brain In-jury: Age Dependency of Neurocognitive Dysfunction Follow-ing Radiotherapy. Cancers (Basel) 2023; 15(11): 2999. DOI: 10.3390/cancers15112999.
Zegers CML, Offermann C, Dijkstra J, Compter I, Hoebers FJP, de Ruysscher D, et al. Clinical implementation of standardized neurocognitive assessment before and after radiation to the brain. Clin Transl Radiat Oncol 2023; 42: 100664. DOI: 10.1016/j.ctro.2023.100664.
Mesny E, Jacob J, Noël G, Bernier MO, Ricard D. Specific radio-sensitivity of brain structures (areas or regions) and cognitive impairment after focal or whole brain radiotherapy: A review. Cancer Radiother 2025; 29(3): 104625. DOI: 10.1016/j.canrad.2025.104625.
Zhu L, Ma Y, Kong A, Wu X, Ren Y, Zhou W, et al. Non-invasive and sensitive MRI assessment of radiation-induced cognitive dysfunction via voxel-based morphological and functional connectivity. Acta Neuropathol Commun 2025; 13(1): 180. DOI: 10.1186/s40478-025-02092-y.
Chen M, Wang L, Gong G, Yin Y, Wang P. Quantitative study of the changes in brain white matter before and after radio-therapy by applying multi-sequence MR radiomics. BMC Med Imaging 2022; 22(1): 86. DOI: 10.1186/s12880-022-00816-3.
Alshuhri MS, Al-Mubarak HF, Qaisi A, Alhulail AA, Al-Mansour AGM, Madkhali Y, et al. MRI Delta Radiomics to Track Early Changes in Tumor Following Radiation: Applica-tion in Glioblastoma Mouse Model. Biomedicines 2025; 13(4): 815. DOI:10.3390/biomedicines13040815
Wang Y, Tian J, Liu D, Li T, Mao Y, Zhu C. Microglia in radia-tion-induced brain injury: Cellular and molecular mechanisms and therapeutic potential. CNS Neurosci Ther 2024; 30(6): e14794. DOI: 10.1111/cns.14794.
Winter SF, Gardner MM, Karschnia P, Vaios EJ, Grassberger C, Bussière MR, et al. Unique brain injury patterns after proton vs photon radiotherapy for WHO grade 2-3 gliomas. Oncolo-gist 2024; 29(12): e1748–61. DOI: 10.1093/oncolo/oyae195.
Franco D, Granata V, Fusco R, Grassi R, Nardone V, Lombardi L, et al. Artificial intelligence and radiation effects on brain tissue in glioblastoma patient: preliminary data using a quanti-tative tool. Radiol Med 2023; 128(7): 813–27. DOI: 10.1007/s11547-023-01655-0.
Zhao J, Vaios E, Yang Z, Lu K, Floyd S, Yang D, et al. Radioge-nomic explainable AI with neural ordinary differential equa-tion for identifying post-SRS brain metastasis radionecrosis. Med Phys 2025; 52(4): 2661–74. DOI: 10.1002/mp.17635.
