Uticaj derivata žučne kiseline na analgetski efekat morfina kod miševa

  • Velibor Vasović Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
  • Saša Vukmirović Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
  • Momir Mikov Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
  • Ivan Mikov Department of Occupational Medicine, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
  • Zorana Budakov Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
  • Nebojša Stilinović Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
  • Boris Milijašević Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
Ključne reči: morphine||, ||morfin, mice||, ||miševi, bile acids and salts||, ||žučne kiseline i soli, blood-brain barrier||, ||krvno-moždana barijera,

Sažetak


Uvod/Cilj. Poznato je da žučne kiseline poboljšavaju apsorpciju, povećavaju biološku raspoloživost i poboljšavaju farmakodinamske osobine nekih lekova. Budući da je analgezija izazvana morfinom posledica aktivacije opioidnih receptora u centralnom nervnom sistemu na spinalnom i supraspinalnom nivou, i da molekul morfina sadrži tri polarne grupe zbog čega teško prolazi kroz hematoencefalnu barijeru, cilj studije bio je da se ispita potencijalni uticaj derivata žučnih kiselina, natrijumove soli monoketoholne kiseline (MKH-Na) i metil estra monoketoholne kiseline (MKH-Me), na analgetski efekat morfina. Metode. Studija je sprovedena na belim miševima NMRI-Haan soja, muškog pola, telesne mase 20–24 g. Analgetski efekat morfina (primenjenog supkutano i intramuskularno u dozi 2 mg/kg) sa i bez pretretmana MKH-Na (4 mg/kg) i MKH-Me (4 mg/kg) procenjivan je metodom vrele ploče. Rezultati. Primena MKH-Me pre supkutane primene morfina pojačala je analgetski efekat morfina bez statistički značajne razlike. Primena MKH-Na nije uticala na analgetski efekat morfina primenjenog supkutano. Analgetski efekat intramuskularno primenjenog morfina, 20 minuta nakon primene MKH-Me, bio je pojačan. U poređenju sa grupom životinja kod kojih je primenjen samo morfin, statistički značajna razlika u analgetskom efektu zabeležena je 10, 30, 40 i 50 minuta nakon njegove  primene (p < 0,05). Pretretman sa MKH-Na nije uticao na analgetski efekat morfina primenjenog intramuskularno. Zaključak. Na osnovu rezulata studije može se pretpostaviti da nakon intramuskularne primene morfina metil estar monoketoholne kiseline povećava transport morfina u centralni nervni sistem i posledično dovodi do pojačanja analgetskog efekta morfina. Dalja istraživanja interakcija žučnih kiselina i morfina in vitro i in vivo neophodna su da bi se u potpunosti rasvetlio mehanizam interakcije, a time i mehanizam pojačanja analgetskog efekta morfina.

Biografije autora

Velibor Vasović, Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia

Department of Pharmacology, Toxicology and Clinical Pharmacology

MD, PhD, researcher

Saša Vukmirović, Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia

Department of Pharmacology, Toxicology and Clinical Pharmacology

MD, researcher

Momir Mikov, Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia

Department of Pharmacology, Toxicology and Clinical Pharmacology

MD, PhD, researcher

Ivan Mikov, Department of Occupational Medicine, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia

Department of Occupational Medicine

MD, PhD, researcher

Zorana Budakov, Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia

Department of Pharmacology, Toxicology and Clinical Pharmacology

MD, researcher

Nebojša Stilinović, Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia

Department of Pharmacology, Toxicology and Clinical Pharmacology

MD, researcher

Boris Milijašević, Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia

Department of Pharmacology, Toxicology and Clinical Pharmacology

MD, researcher

Reference

Mikov M, Fawcett JP. Bile acids-chemistry, biosynthesis, analy-sis, chemical and metabolic transformation and pharmacology. 1st ed. Geneva: Mediset Publishers; 2008.

Al-Salami H, Butt G, Tucker I, Mikov M. Influence of the semi-synthetic bile acid (MKC) on the ileal permeation of gliclazide in healthy and diabetic rats. Pharmacol Rep 2008; 60(4): 532−41

Hsiesh DS. Drug permeation enhancement: Theory and appli-cations. New York: Marcel Dekker; 1994.

Sayani AP, Chien YW. Systemic delivery of peptides and pro-teins across absorptive mucosae. Crit Rev Ther Drug 1996; 13(1−2): 85−184.

Gutstein HB, Akil H. Opioid analgesics. In: Hardman JG, Lim-bird LE, editors. Goodman and Gilman’s The Pharmacological Basis of Therapeutics. 10th ed. New York: McGraw-Hill; 2001. p. 569−619.

Jaffe JH, Martin WR. Opioid analgesics and antagonists. In: Gilman AG, Rall TW, Nies AS, Taylor P, editors. Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 10th. New York: Pergamon Press; 1990. p. 485−521.

Hoskin PJ, Hanks GW, Aherne GW, Chapman D, Littleton P, Fil-shie J. The bioavailability and pharmacokinetics of morphine after intravenous, oral and buccal administration in healthy volunteers. Br J Clin Pharmacol 1989; 27(4): 499−505.

Berkowitz BA. The relationship of pharmacokinetics to phar-macological activity: morphine, methadone and naloxone. Clin Pharmacokinet 1976; 1(3): 219–30.

Institute of Laboratory Animal Research, Commission on Life Sciences. National Research Council. Guide for the Care and Use of Laboratory Animals. Washington DC: National Academy Press; 1996.

Miljkovic D, Kuhajda K, Hranisavljevic J. Selective C-12 oxidation of cholic acid. J Chem Res 1996; 2: 106−7.

Mikov M, Kevresan S, Kuhajda K, Jakovljević V, Vasović V. 3Alpha,7alpha-dihydroxy-12-oxo-5beta-cholanate as blood-brain barrier permeator. Pol J Pharmacol 2004; 56(3): 367−71.

Poša M, Kevrešan S, Mikov M, Ćirin-Novta V, Kuhajda K. Effect of cholic acid and its keto derivatives on the analgesic action of lidocaine and associated biochemical parameters in rats. Eur J Drug Metab Pharmacokinet 2007; 32(2): 109−17.

Vasovic V, Vukmirovic S, Pjevic M, Mikov I, Mikov M, Jakovljevic V. Influence of bile acid derivates on tramadol analgesic effect in mice. Eur J Drug Metab Pharmacokinet 2010; 35(1−2): 75−8.

Vogel G, Vogel WH. Drug discovery and evaluation: Pharma-cological assays. 2nd ed. Berlin: Springer-Verlag; 2002.

Rašković A, Mikov M, Škrbić R, Jakovljević V, Vasović V, Posa M, et al. Effect of stevioside and sodium salt of monoketocholic acid on glycemia in normoglycemic and diabetic rats. Eur J Drug Metab Pharmacokinet 2008; 33(1): 17−22.

Posa M, Guzsvány V, Csanádi J, Kevresan S, Kuhajda K. Formation of hydrogen-bonded complexes between bile acids and lido-caine in the lidocaine transfer from an aqueous phase to chlo-roform. Eur J Pharm Sci 2008; 34(4−5): 281−92.

Vasovic V, Mikov M, Kuhajda K, Kevresan S, Jakovljevic V. The in-fluence of sodium salt of monoketocholic acid on quinine tran Yugoslav Physiol Pharmacol Acta 2001; 37(3): 89−98.

Poša M, Csanádi J, Kövér KE, Guzsvány V, Batta G. Molecular in-teractions between selected sodium salts of bile acids and morphine hydrochloride. Colloids Surf B Biointerfaces 2012; 94: 317−23.

Kuhajda I, Poša M, Jakovljević V, Ivetić V, Mikov M. Effect of 12-monoketocholic acid on modulation of analgesic action of morphine and tramadol. Eur J Drug Metab Pharmacokinet 2009; 34(2): 73−8.

Tsuji A, Terasaki T, Takabatake Y, Tenda Y, Tamai I, Yamashima T, et al. P-glycoprotein as the drug efflux pump in primary cul-tured bovine brain capillary endothelial cells. Life Sci 1992; 51(18): 1427−37.

Tatsuta T, Naito M, Oh-Hara T, Sugawara I, Tsuruo T. Functional involvement of P-glycoprotein in blood-brain barrier. J Biol Chem 1992; 267(28): 20383−91.

Callaghan R, Riordan JR. Synthetic and natural opiates interact with P-glycoprotein in multidrug-resistant cells. J Biol Chem 1993; 268(21): 16059−64.

Schinkel AH, Wagenaar E, Van DL, Mol CA, Borst P. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyc-losporin A. J Clin Invest 1995; 96(4): 1698−705.

Mazzanti R, Fantappié O, Kamimoto Y, Gatmaitan Z, Gentilini P, Arias IM. Bile acid inhibition of P-glycoprotein-mediated transport in multidrug-resistant cells and rat liver canalicular membrane vesicles. Hepatology 1994; 20(1 Pt 1): 170−6.

Lam P, Wang R, Ling V. Bile acid transport in sister of P-glycoprotein (ABCB11) knockout mice. Biochemistry 2005; 44(37): 12598−605.

Brunk SF, Delle M. Morphine metabolism in man. Clin Phar-macol Ther 1974; 16(1): 51−7.

Ronald AL, Docherty D, Broom J, Chambers WA. Subarachnoid local anesthetic block does not affect morphine absorption from paired intramuscular and subcutaneous injection sites in the elderly patient. Anesth Analg 1993; 76(4): 778−82.

Penson RT, Joel SP, Bakhshi K, Clark SJ, Langford RM, Slevin ML. Randomized placebo-controlled trial of the activity of the morphine glucuronides. Clin Pharmacol Ther 2000; 68(6): 667−76.

Skarke C, Darimont J, Schmidt H, Geisslinger G, Lötsch J. Analgesic effects of morphine and morphine-6-glucuronide in a transcutaneous electrical pain model in healthy volunteers. Clin Pharmacol Ther 2003; 73(1): 107−21.

Pasternak GW, Bodnar RJ, Clark JA, Inturrisi CE. Morphine-6-glucuronide, a potent mu agonist. Life Sci 1987; 41(26): 2845−9.

Shimomura K, Kamata O, Ueki S, Ida S, Oguri K. Analgesic effect of morphine glucuronides. Tohoku J Exp Med 1971; 105(1): 45−52.

Gong QL, Hedner J, Björkman R, Hedner T. Morphine-3-glucuronide may functionally antagonize morphine-6-glucuronide induced antinociception and ventilatory depres-sion in the rat. Pain 1992; 48(2): 249−55.

Smith MT, Watt JA, Cramond T. Morphine-3-glucuronide: a po-tent antagonist of morphine analgesia. Life Sci 1990; 47(6): 579−85.

McEvoy GK. AHFS – Drug Information. 43rd ed. Bethesda, Md: American Society of Health-System Pharmacists, Inc; 2001.

Objavljeno
2015/04/23
Broj časopisa
Rubrika
Originalni članak