Uticaj postoperativne terapije laserom male snage na oseointegraciju samourezujućih implantata u bočnoj regiji gornje vilice: šestonedeljna split-mouth klinička studija

  • Borka Mandić Clinic of Oral Surgery, Faculty of Dental Medicine, University of Belgrade, Belgrade, Serbia
  • Zoran Lazić Clinic of Dental Medicine, Military Medical Academy, Belgrade, Serbia; Faculty of Medicine of the Military Medical Academy, University of Defence, Belgrade, Serbia
  • Aleksa Marković * Clinic of Oral Surgery, School of Dentistry, University of Belgrade, Serbia
  • Bojan Mandić Clinic of Maxillofacial Surgery, Faculty of Dental Medicine, University of Belgrade, Belgrade, Serbia
  • Miška Mandić Department of Orthodontics, Faculty of Dental Medicine, University of Belgrade, Belgrade, Serbia
  • Ana Djinić Clinic of Oral Surgery, Faculty of Dental Medicine, University of Belgrade, Belgrade, Serbia
  • Bojana Miličić Department for Medical Statistics and Informatics,Faculty of Dental Medicine, University of Belgrade, Belgrade, Serbia
Ključne reči: dental implants||, ||implantati, stomatološki, oral surgical procedures||, ||hirurgija, oralna, procedure, laser therapy, low-level||, ||lečenje laserom male snage, bone regeneration||, ||kost, regeneracija, alkaline phosphatase||, ||alkalna fosfataza, treatment outcome||, ||lečenje, ishod,

Sažetak


Uvod/Cilj. Terapija laserom male snage (TLMS) stimuliše reparatorne sposobnosti kosti utičući na ćelijsku proliferaciju, diferencijaciju i adheziju, i ima potencijal da skrati vreme zarastanja kosti nakon ugradnje implantata. Cilj ove kliničke studije bio je da se ispita uticaj postoperativne primene TLMS na oseointegraciju i rani uspeh ugradnje samourezujućih implantata u kost male gustine. Metode. Prateći split-mouth dizajn, samourezujući implantati (n = 44) ugrađeni su u posteriorne regije gornje vilice 12 pacijenata. Slučajnim izborom, jednoj od strana vilice je dodeljena TLMS (test grupa), dok je druga strana bila placebo (kontrolna grupa). Za TLMS korišćen je galijum-aluminijum-arsenid (GaAlAs) laser (Medicolaser 637, Technoline, Beograd, Srbija) talasne dužine 637 nm, snage 40 mW, neprekidnog režima rada. Tretman laserom male snage sprovodio se neposredno po ugradnji, a zatim svakodnevno, tokom narednih sedam dana. Ukupna zračna doza po tretmanu bila je 6,26 J/cm² po implantatu. Praćeni su stabilnost implantata, aktivnost alkalne fosfataze (ALP) i procenat rane uspešnosti implantatne terapije. Period praćenja bio je šest nedelja. Rezultati. Zračeni implantati imali su veću stabilnost u odnosu na kontrolne tokom celog perioda praćenja, a statistički značajno veća stabilnost bila je u petoj postoperativnoj nedelji (t-test za vezane uzorke, p = 0.030). Razlika u aktivnosti ALP između grupa nije bila statistički značajna ni u jednoj tački posmatranja (t-test za vezane uzorke, p > 0.05). Procenat rane uspešnosti terapije implantatima bio je 100%, bez obzira na primenjenu TLMS. Zaključak. Svakodnevna primena TLMS u prvoj postoperativnoj nedelji nije pokazala značajan uticaj na oseointegraciju samourezujućih implantata u kost male gustine bočne regije gornje vilice. Primena implantata samourezujućeg makrodizajna u kosti male gustine mogla bi predstavljati predvidljivu terapijsku proceduru sa visokim procentom rane uspešnosti, bez obzira na primenjenu TLMS.

Reference

Harris DM. Biomolecular mechanism of laser biostimulation. J Clin Laser Med Surg 1991; 9(4): 277−80.

Stanford OT, Beirne R, Ellingsen JE. Effects of Low-Level Laser Treatment on Bone Regeneration and Osseointegration of Dental Implants. Int J Oral Maxillofac Implants 2007; 22(5): 691−5.

Markovic A, Kokovic V, Todorovic L. The influence of low-power laser on healing of bone defects: An experimental study. J Oral Laser Applic 2005; 5: 169−72.

Marković A, Todorović L. The Influence of Low-power Laser on Healing of Bone Defects after Periapical Surgery: A Clinical Study. J Oral Laser Applic 2006; 6: 163−8.

Pinheiro AL, Gerbi ME. Photoengineering of bone repair processes. Photomed Laser Surg 2006; 24(2): 169−78.

Karu T. Photobiology of low-power laser effects. Health Phys 1989; 56(5): 691−704.

Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K. Effect of la-ser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant ma-terial. Biomaterials 2005; 26(17): 3503−9.

Stein E, Koehn J, Sutter W, Wendtlandt G, Wanschitz F, Thurnher D, et al. Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wien Klin Wo-chenschr 2008; 120(3−4): 112−7.

Ozawa Y, Shimizu N, Kariya G, Abiko Y. Low-energy laser ir-radiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 1998; 22(4): 347−54.

da Silva AP, Petri AD, Crippa GE, Stuani AS, Stuani AS, Rosa AL, et al. Effect of low-level laser therapy after rapid maxillary expansion on proliferation and differentiation of osteoblastic cells. Lasers Med Sci 2012; 27(4): 777−83.

Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I, et al. Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 2005; 20(3−4): 138−46.

Khadra M, Rønold HJ, Lyngstadaas SP, Ellingsen JE, Haanaes HR. Low-level laser therapy stimulates bone-implant interaction: an experimental study in rabbits. Clin Oral Implants Res 2004; 15(3): 325−32.

Maluf AP, Maluf RP, da Brito CR, França FM, de Brito RB. Me-chanical evaluation of the influence of low-level laser therapy in secondary stability of implants in mice shinbones. Lasers Med Sci 2010; 25(5): 693−8.

Boldrini C, de Almeida JM, Fernandes LA, Ribeiro FS, Garcia VG, Theodoro LH, et al. Biomechanical effect of one session of low-level laser on the bone-titanium implant interface. Lasers Med Sci 2013; 28(1): 349−52.

Lekholm U, Zarb GA. Patient selection and preparation. In: Branemark PI, Zarb GA, Albrektsson T, editors. Tissue-Integrated Prostheses: Osseointegration in clinical dentistry. 1st ed. Chicago: Quintessence; 1985. p. 199−210.

Bischof M, Nedir R, Szmukler-Moncler S, Bernard J, Samson J. Im-plant stability measurement of delayed and immediately loaded implants during healing. Clin Oral Implants Res 2004; 15(5): 529−39.

Buser D, Weber HP, Lang NP. Tissue integration of non-submerged implants. 1-year results of a prospective study with 100 ITI hollow-cylinder and hollow-screw implants. Clin Oral Implants Res 1990; 1(1): 33−40.

Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC. Biology of im-plant osseointegration. J Musculoskelet Neuronal Interact 2009; 9(2): 61−71.

Pereira CL, Sallum EA, Nociti FH, Moreira RW. The effect of low-intensity laser therapy on bone healing around titanium implants: a histometric study in rabbits. Int J Oral Maxillofac Implants 2009; 24(1): 47−51.

Jakse N, Payer M, Tangl S, Berghold A, Kirmeier R, Lorenzoni M. Influence of low-level laser treatment on bone regeneration and osseointegration of dental implants following sinus aug-mentation. An experimental study on sheep. Clin Oral Im-plants Res 2007; 18(4): 517−24.

Meredith N. Assessment of implant stability as a prognostic de-terminant. Int J Prosthodont 1998; 11(5): 491−501.

Huwiler MA, Pjetursson BE, Bosshardt DD, Salvi GE, Lang NP. Resonance frequency analysis in relation to jawbone characte-ristics and during early healing of implant installation. Clin Oral Implants Res 2007; 18(3): 275−80.

Lopes CB, Pinheiro AL, Sathaiah S, Duarte J, Cristinamartins M. Infrared laser light reduces loading time of dental implants: a Raman spectroscopic study. Photomed Laser Surg 2005; 23(1): 27−31.

Garcia-Morales JM, Tortamano-Neto P, Todescan FF, de Andrade JC, Marotti J, Zezell DM. Stability of dental implants after irradiation with an 830-nm low-level laser: a double-blind randomized clinical study. Lasers Med Sci 2012; 27(4): 703−11.

Marković A, Calvo-Guirado JL, Lazić Z, Gómez-Moreno G, Ćalasan D, Guardia J, et al. Evaluation of primary stability of self-tapping and non-self-tapping dental implants. A 12-week clini-cal study. Clin Implant Dent Relat Res 2013; 15(3): 341−9.

Campanha BP, Gallina C, Geremia T, Loro RC, Valiati R, Hubler R, et al. Low-level laser therapy for implants without initial stability. Photomed Laser Surg 2010; 28(3): 365−9.

Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassi-nari MS, et al. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentia-tion during formation of the bone extracellular matrix. J Cell Physiol 1990; 143(3): 420−30.

Berglundh T, Abrahamsson I, Lang NP, Lindhe J. De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res 2003; 14(3): 251−62.

Plagnat D, Giannopoulou C, Carrel A, Bernard J, Mombelli A, Belser UC. Elastase, alpha2-macroglobulin and alkaline phosphatase in crevicular fluid from implants with and without periimplan-titis. Clin Oral Implants Res 2002; 13(3): 227−33.

Groeneveld MC, van den Bos T, Everts V, Beertsen W. Cell-bound and extracellular matrix-associated alkaline phosphatase activity in rat periodontal ligament. Experimental Oral Biology Group. J Periodont Res 1996; 31(1): 73−9.

Objavljeno
2015/07/08
Broj časopisa
Rubrika
Originalni članak