Uticaj hidrotermalno sintetisanog hidroksiapatita na zarastanje koštanih defekatakod pasa sa ili bez tretmana kortikosteroidima

  • Dejan Marković Faculty of Dentistry, University of Belgrade, Belgrade, Serbia
  • Vukoman Jokanović Laboratory for Radiation Chemistry and Physics, Institute of Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia
  • Bojan Petrović Dentistry Clinic of Vojvodina, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
  • Tamara Perić Faculty of Dentistry, University of Belgrade, Belgrade, Serbia
  • Biserka Vukomanović Institute of Pathology, Military Medical Academy, Belgrade, Serbia; Faculty of Medicine of the Military Medical Academy, University of Defence, Belgrade, Serbia
Ključne reči: tooth extraction||, ||zub, ekstrakcija, alveolar bone loss||, ||alveolna kost, gubitak, transplants||, ||graftovi, rats||, ||pacovi, durapatite||, ||hidroksiapatiti, adrenal cortex hormones||, ||kortikosteroidni hormoni,

Sažetak


Uvod/Cilj. Autogeni koštani graftovi predstavljaju zlatni standard u stomatologiji za popunjavanje koštanih defekata. Studija je sprovedena kako bi se ispitala efikasnost višefaznog karbonatnog hidroksiapatita (HA), dobijenog hidrotermalnam metodom, kao zamene za kost kod in vivo zarastanja koštanih defekata. Procena efikasnosti izvršena je patohistološkom analizom na pacovima (Sprague Dawley). Metode. Koštani defekti načinjeni su u alveolarnoj kosti ekstrakcijom bočnih zuba kod 12 pacova. Eksperimentalne životinje prvo su bile podeljene u dve grupe. Prva, kontrolna grupa, bila je bez terapije, dok je druga, eksperimentalna grupa intramuskularno dobijala kortikosteroidnu terapiju i to metilprednizolon i deksametazon. Ekstrakcija bočnih zuba izvršena je nakon resorpcije izazvane terapijom kortikosteroidima. Ekstrakcione rane ispunjene su hidroksiapatitom čestica veličine 50–250 µm, a uzorci uzeti iz postekstrakcionih defekata alveolarne kosti analizirane su patohistološki. Rezultati. Patohistološkom analizom potvrđena su biološka osteokonduktivna svojstva primenjenog materijala. Intenzivni rast nove kosti unutar alveolarnog grebena jasno je uočen u obe grupe eksperimentalnih životinja. Karbonatni HA dobijen hidrotermalnim metodom inicirao je formiranje kosti preko površine defekata, potvrđujući efikasnost njegove primene kod koštanih defekata. Do potpune resorpcije materijala došlo je posle 25 nedelja. Zaključak. Ispitivani hidroksiapatit u potpunosti zadovoljava kliničke zahteve kao zamena za kost, poštujući ograničenja eksperimentalne namene studije. Zbog mikrostrukture materijala došlo je do kompletne resorpcije tokom perioda posmatranja.  Lečenje kortikosteroidima nije značajno uticalo na stvaranje nove kosti u predelu potekstrakcionih defekata.

Reference

Misch CM. Maxillary autogenous bone grafting. Oral Maxillofac Surg Clin North Am 2011; 23(2): 229−38.

Yang P, Quan Z, Li C,Kang X, Lian H, Lin J. Bioactive, luminis-cent and mesoporous europium-doped hydroxyapatite as a drug carrier. Biomaterials 2008; 29(32): 4341−7

Yang P, Quan Z, Lu L, Huang S, Lin J. Luminescence functio-nalization of mesoporous silica with different morphologies and applications as drug delivery systems. Biomaterials 2008; 29(6): 692−702.

Rokn AR, Khodadoostan MA, Reza Rasouli Ghahroudi AA, Motah-hary P, Kharrazi Fard MJ, Bruyn HD, et al. Bone formation with two types of grafting materials: a histologic and histomorpho-metric study. Open Dent J 2011; 5: 96−104.

Thorwarth M, Schultze-Mosgau S, Kessler P, Wiltfang J, Schlegel KA. Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite. J Oral Maxillofac Surg 2005; 63(11): 1626−33.

Pon-On W, Meejo S, Tang IM. Formation of hydroxyapatite crys-tallites using organic template of polyvinyl alcohol (PVA) and sodium dodecyl sulfate (SDS). Mater Chem Phys 2008; 112(2): 453−60.

Ye F, Guo H and Zhang H. Biomimetic synthesis of oriented hydroxyapatite mediated by nonionic surfactants. Nanotech-nology 2008; 19(12): 245605−12.

Kim do K, Lee SJ, Cho TH, Hui P, Kwon MS, Hwang SJ. Comparison of a synthetic bone substitute composed of carbonated apatite with an anorganic bovine xenograft in par-ticulate forms in a canine maxillary augmentation model. Clin Oral Implants Res 2010; 21(12): 1334−44.

Barralet JE, Best SM, Bonfield W. Effect of sintering parameters on the density and microstructure of carbonate hydroxyapa-tite. J Mater Sci Mater Med 2000;11(11): 719−24.

Hasegawa M, Ohashi T, Tani T, Doi Y. Osteoconduction and bioresorption of sintered carbonate apatite. Key Eng Mater 2001; 192(195): 453−6.

Canalis E. Mechanism of glucocorticoid-induced osteoporosis. Curr Opin Rheumatol 2003; 15(4): 454−7.

Kim HJ, Zhao H, Kitaura H, Bhattacharyya S, Brewer JA, Muglia LJ, et al. Dexamethsone suppresses bone formation via the osteoclast. Adv Exp Med Biol 2007; 602: 43−6.

Karring T, Lang NP, Lindhe J. Clinical Periodontology and Im-plant Dentistry. 4th ed. Oxford: Blackwell Publishing; 2003.

Park JY, Koo KT, Kim TL, Seol YJ, Lee YM, Ku Y, et al. Socket preservation using deproteinized horsederived bone mineral. J Periodontal Implant Sci 2010; 40(5): 227−31.

Jokanovic V, Izvonar D, Dramicanin MD, Jokanovic B, Zivojinovic V, Markovic D, et al. Hydrothermal synthesis and nanostructure of carbonated calcium hydroxyapatite. J Mater Sci Mater Med 2006; 17(6): 539−46.

Jokanović V, Jokanović B, Marković D, Živojinović V, Pašalić S, Iz-vonar D, et al. Kinetics and sintering mechanisms of hydro-thermally obtained hydroxyapatite. Mater Chem Phys 2008; 111(1): 180−5.

Balasundaram G, Sato M, Webster TJ. Using hydroxyapatite na-noparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials 2006; 27(14): 2798−805.

Evis Z, Sato M, Webster TJ. Increased osteoblast adhesion on nanograined hydroxyapatite and partially stabilized zirconia composites. J Biomed Mater Res 2006; 78(3): 500−7.

Grandjean-Laquerriere A, Laquerriere P, Jallot E, Nedelec JM, Gue-nounou M, Laurent-Maquin D et al. Influence of the zinc concen-tration of sol-gel derived zinc substituted hydroxyapatite on cytokine production by human monocytes in vitro. Biomate-rials 2006; 27(17): 3195−200.

Grandjean-Laquerriere A, Laquerriere P, Guenounou M, Laurent-Maquin D, Phillips TM. Importance of the surface area ratio on cytokines production by human monocytes in vitro induced by various hydroxyapatite particles. Biomaterials 2005; 26(15): 2361−9.

Pretel H, Lizarelli RF, Ramalho LT. Effect of low-level laser therapy on bone repair: Histological study in rats. Lasers Surg Med 2007; 39(10): 788−96.

Hedner E, Linde A. Efficacy of bone morphogenetic protein (BMP) with osteopromotive membranes--an experimental study in rat mandibular defects. Eur J Oral Sci 1995; 103(4): 236−41.

Andrade JCT, Camilli JA, Kawachi EY, Bertran CA. Behavior of dense and porous hydroxyapatite implants and tissue response in rat femoral defects. J Biomed Mater Res 2002; 62(1): 30−6.

Tsai SW, Hsu FY, Chen PL. Beads of collagen–nanohydroxyapatite composites prepared by a biomimetic process and the effects of their surface texture on cellular be-havior in MG63 osteoblast-like cells. Acta Biomater 2008; 4(5): 1332−41.

Laquerriere P, Grandjean-Laquerriere A, Addadi-Rebbah S, Jallot E, Laurent-Maquin D, Frayssinet P, et al. MMP-2, MMP-9 and their inhibitors TIMP-2 and TIMP-1 production by human mono-cytes in vitro in the presence of different forms of hydroxya-patite particles. Biomaterials 2004; 25(13): 2515−24.

Kim HW, Gu HJ, Lee HH. Microspheres of collagen-apatite nanocomposites with osteogenic potential for tissue engineer-ing. Tissue Eng 2007; 13(5): 965−73.

Thian ES, Zeeshan A, Jie H, Mohan JE, Jayasinghe SN, Ireland DC, et al. The role of electrosprayed apatite nanocrystals in guiding osteoblast behaviour. Biomaterials 2008; 29(12): 1833−43.

Objavljeno
2015/04/23
Broj časopisa
Rubrika
Originalni članak