In vitro ispitivanje selektivnosti antiproliferativnog dejstva dijetetskih izotiocijanata na tumorske u odnosu na normalne humane ćelije

  • Aleksandra Konić Ristić Institute for Medical Research, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Belgrade, Serbia
  • Tatjana Stanojković Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
  • Tatjana Srdić-Rajić Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
  • Sanda Dilber UniveDepartment of Organic Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
  • Brižita Đorđević Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
  • Ivan Stanković Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
  • Zorica Juranić Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
Ključne reči: isothiocyanates||, ||izotiocijanati, vegetables||, ||povrće, neoplastic cells, circulating||, ||neoplazme, cirkulišuće ćelije, lymphocytes||, ||limfociti, chemoprevention||, ||hemoprevencija,

Sažetak


Uvod/Cilj. Brojne epidemiološke studije pokazale su povoljne efekte konzumiranja povrća iz familije kupusnjača (Brassicaceae) u hemioprevenciji karcinoma. Osnovni biološki aktivni sastojci ovog povrća su izotiocijanati, prisutni u obliku prekursora – glukozinolata. Cilj ovog rada bio je određivanje selektivnosti antiproliferativnog delovanja dijetetskih izotiocijanata na maligne ćelije u odnosu na normalne ćelije. Metode. Antiproliferativna aktivnost tri izotiocijanata zastupljena u ljudskoj ishrani: sulforafana (SFN), benzil-izotiocijanata (BITC) i feniletil-izotiocijanata (FEITC) na humane maligne ćelijske linije, HeLa, ćelijsku liniju karcinoma grlića materice, Fem-x, ćelijsku liniju melanoma, i LS 174, ćelijsku liniju karcinoma kolona, kao i na mononuklearne ćelije periferne krvi (MNĆPK), sa ili bez delovanja mitogena, određivana je MTT kalorimetrijskim testom, 72 h nakon kontinuiranog delovanja agenasa. Rezultati. Svi ispitivani izotiocijanati inhibirali su proliferaciju HeLa, Fem-x i LS 174 ćelija. Na svim ćelijskim linijama BITC je pokazao najizraženije delovanje sa vrednostima polumaksimalne inhibitorne koncentracije (IC50) od 5.04 mmol m-3 na HeLa ćelijama, 2,76 mmoL m-3 na Fem-x i 14,30 mmol m-3 na LS 174 ćelijama. Svi ispitivani izotiocijanati pokazali su citotoksično delovanje na MNĆPK, ali sa višim IC50 vrednostima u odnosu na maligne ćelije. Indeksi selektivnosti antitumorkog delovanja, izraženi kao odnos IC50 vrednosti dobijenih na MNĆPK i malignim ćelijama, bili su između 1,12 i 16,57, sa najvišom vrednosti pri delovanju BITC na Fem-x ćelije. Zaključak. Na osnovu antiproliferativne aktivnosti na maligne ćelije i selektivnosti antiproliferativnog delovanja na maligne u odnosu na normalne ćelije, benzil izotiocijanat se ističe kao perspektivni agens u hemioprevenciji karcinoma. Generalno, pored antitumorskog delovanja, bezbednost primene ovih jedinjenja treba da predstavlja važan kriterijum u izboru odgovarajućih izotiocijanata za primenu u primarnoj, sekundarnoj i tercijarnoj hemioprevenciji kancera. Ispitivanje selektivnosti predstavlja pogodan pristup oceni bezbednosti i prirodnih izotiocijanata i sintetskih analoga.

Reference

Higdon JV, Delage B, Williams DE, Dashwood RH. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharm Res 2007; 55(3): 224−36.

Tse G, Eslick GD. Cruciferous Vegetables and Risk of Colorectal Neoplasms: A Systematic Review and Meta-Analysis. Nutr Cancer 2013; 66(1): 128−39.

Liu B, Mao Q, Wang X, Zhou F, Luo J, Wang C, et al. Crucifer-ous vegetables consumption and risk of renal cell carcinoma: a meta-analysis. Nutr Cancer 2013; 65(5): 668−76.

Liu X, Lv K. Cruciferous vegetables intake is inversely asso-ciated with risk of breast cancer: A meta-analysis. Breast 2013; 22(3): 309−13.

Liu B, Mao Q, Lin Y, Zhou F, Xie L. The association of cruci-ferous vegetables intake and risk of bladder cancer: a meta-analysis. World J Urol 2012; 31(1): 127−33.

Kjaer A. Chemical Plant Taxonomy. London (UK): Academic Press; 1963.

Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P. Hu-man metabolism and excretion of cancer chemoprotective glu-cosinolates and isothiocyanates of cruciferous vegetables. Can-cer Epidemiol Biomarkers Prev 1998; 7(12): 1091−100.

Keum YS, Jeong WS, Kong AN. Chemopreventive functions of isothiocyanates. Drug News Perspect 2005; 18(7): 445−51.

Bianchini F, Vainio H. Isothiocyanates in Cancer Prevention. Drug Metab Rev 2004; 36(3−4): 655−67.

Navarro SL, Li F, Lampe JW. Mechanisms of action of isothi-ocyanates in cancer chemoprevention: an update. Food Funct 2011; 2(10): 579−87.

Wagner AE, Terschluesen AM, Rimbach G. Health Promoting Effects of Brassica-Derived Phytochemicals: From Chemopre-ventive and Anti-Inflammatory Activities to Epigenetic Regu-lation. Oxid Med Cell Longev 2013; 2013: 1−12.

Talalay P, Fahey JW. Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr 2001; 131(11): 3027−33.

Zhang Y, Yao S, Li J. Vegetable-derived isothiocyanates: anti-proliferative activity and mechanism of action. Proc Nutr Soc 2006; 65(1): 68−75.

Zhang Y, Talalay P. Anticarcinogenic activities of organic iso-thiocyanates: chemistry and mechanisms. Cancer Res 1994; 54(Suppl 7): 1976s−981s.

Singh SV, Singh K. Cancer chemoprevention with dietary iso-thiocyanates mature for clinical translational research. Carci-nogenesis 2012; 33(10): 1833−42.

Minarini A, Milelli A, Fimognari C, Simoni E, Turrini E, Tumiatti V. Exploring the effects of isothiocyanates on chemotherapeutic drugs. Expert Opin Drug Metab Toxicol 2014; 10(1): 25−38.

Zhang Y. Cancer-preventive isothiocyanates: measurement of human exposure and mechanism of action. Mutat Res 2004; 555(1−2): 173−90.

de Flora S, Ferguson LR. Overview of mechanisms of cancer chemopreventive agents. Mutat Res 2005; 591(1−2): 8−15.

Kim MJ, Kim SH, Lim SJ. Comparison of the apoptosis-inducing capability of sulforaphane analogues in human colon cancer cells. Anticancer Res 2010; 30(9): 361−9.

Khiar N, Werner S, Mallouk S, Lieder F, Alcudia A, Fernández I. Enantiopure Sulforaphane Analogues with Various Substitu-ents at the Sulfinyl Sulfur: Asymmetric Synthesis and Biologi-cal Activities. J Org Chem 2009; 74(16): 6002−9.

Sharma AK, Sharma A, Desai D, Madhunapantula SV, Huh SJ, Robertson GP, et al. Synthesis and Anticancer Activity Comparison of Phenylalkyl Isoselenocyanates with Corresponding Naturally Occurring and Synthetic Isothiocyanates. J Med Chem 2008; 51(24): 7820−6.

Misiewicz I, Skupinska K, Kasprzycka-Guttman T. Differential re-sponse of human healthy lymphoblastoid and CCRF-SB leu-kemia cells to sulforaphane and its two analogues: 2-oxohexyl isothiocyanate and alyssin. Pharmacol Rep 2007; 59(1): 80−7.

Hou DX, Fukuda M, Fujii M, Fuke Y. Induction of NADPH:quinone oxidoreductase in murine hepatoma cells by methylsulfinyl isothiocyanates: methyl chain length-activity study. Int J Mol Med 2000; 6(4): 441−4.

Steinbrecher A, Linseisen J. Dietary Intake of Individual Glucosinolates in Participants of the EPIC-Heidelberg Cohort Study. Ann Nutr Metab 2009; 54(2): 87−96.

Ohno M, Abe T. Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). J Immunol Meth 1991; 145(1−2): 199−203.

Pantelic N, Zmejkovski B, Stanojkovic T, Jeftic V, Radic G, Trifunovic S, et al. Synthesis and high in vitro cytotoxicity of some (S,S)-ethylenediamine-N,N’-di-2-propanoate dihydrochloride esters. J Serb Chem Soc 2014; 79(6): 649−58.

Shetty P, Bharucha K, Tanavde V. Human umbilical cord blood serum can replace fetal bovine serum in the culture of mesen-chymal stem cells. Cell Biol Int 2007; 31(3): 293−8.

Pilkington GJ, Parker K. The Cancer Handbook. Chichester (UK): Wiley-Blackwell Publishing Ltd; 2007.

Park S, Kim G, Bae S, Yoo Y, Choi Y. Induction of apoptosis by isothiocyanate sulforaphane in human cervical carcinoma HeLa and hepatocarcinoma HepG2 cells through activation of caspase-3. Oncol Rep 2007; 18(1): 181−7.

Hasegawa T, Nishino H, Iwashima A. Isothiocyanates inhibit cell cycle progression of HeLa cells at G2/M phase. Anticancer Drug 1993; 4(2): 273−80.

Kalkunte S, Swamy N, Dizon DS, Brard L. Benzyl isothiocyanate (BITC) induces apoptosis in ovarian cancer cells in vitro. J Exp Ther Oncol 2006; 5(4): 287−300.

Bonnesen C, Eggleston IM, Hayes JD. Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res 2001; 61(16): 6120−30.

Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 2012; 12(4): 269−81.

Fimognari C, Nusse M, Cesari R, Iori R, Cantelli-Forti G, Hrelia P. Growth inhibition, cell-cycle arrest and apoptosis in human T-cell leukemia by the isothiocyanate sulforaphane. Carcinogenesis 2002; 23(4): 581−6.

Miyoshi N, Uchida K, Osawa T, Nakamura Y. Selective cytotoxicity of benzyl isothiocyanate in the proliferating fibroblastoid cells. Int J Cancer 2007; 120(3): 484−92.

Zhang Y, Talalay P. Mechanism of differential potencies of iso-thiocyanates as inducers of anticarcinogenic Phase 2 enzymes. Cancer Res 1998; 58(20): 4632−9.

Nakamura Y, Kawakami M, Yoshihiro A, Miyoshi N, Ohigashi H, Kawai K, et al. Involvement of the Mitochondrial Death Path-way in Chemopreventive Benzyl Isothiocyanate-induced Apoptosis. J Biol Chem 2001; 277(10): 8492−9.

Zhang Y. The molecular basis that unifies the metabolism, cel-lular uptake and chemopreventive activities of dietary isothi-ocyanates. Carcinogenesis 2011; 33(1): 2−9.

Grek CL, Tew KD. Redox metabolism and malignancy. Curr Opin Pharmacols 2010; 10(4): 362−8.

Loo G. Redox-sensitive mechanisms of phytochemical-mediated inhibition of cancer cell proliferation (review). J Nutr Biochem 2003; 14(2): 64−73.

Objavljeno
2017/03/20
Broj časopisa
Rubrika
Originalni članak