Računarska i eksperimentalna analiza naponskog stanja tela cementne endoproteze zgloba kuka
Sažetak
Uvod/Cilj. Jednu od mogućih komplikacija posle ugradnje cementne endoproteze zgloba kuka predstavlja prelom tela endoproteze. Prelomi nastaju kao posledica preopterećenja ili zamora materijala od koga je napravljan implantat. Cilj ispitivanja bio je da se odredi intenzitet maksmalnih napona i kritičnog preseka u telu endoproteze. Metode. Jednosmerno promenjive sile koje deluju u zglobu kuka prilikom hoda i opterećenja imaju za rezultat elastične deformacije tela endoproteze. Biomehaničkom analizom sila koje deluju u zglobu kuka određuju se njihov pravac i intenzitet, a na osnovu Gruenove raspodele razlabavljenja tela endoproteze i nivo uklještenja. Ispitivana su tela cementne endoproteze zgloba kuka izrađene od legure kobalt-hrom-molibden (CoCrMo) pogodne za livenje u vakumu. Analiza kritičnih napona u telu endproteze izvedena je na telu endoproteze metodom konačnih elemenata. Eksperimentalna verifikacija dobijenih rezultata sprovedena je na fizičkom prototipu u laboratorijskim uslovima Rezultati. Računarskom analizom pomoću metode konačnih elemenata određeno je naponsko stanje kroz izračunavanje maksimalnih Von Misses-ovih napona i kritični preseci za različite uglove delovanja rezultantne sile. Rezultati dobijeni računarskom i eksperimentalnom metodom u korelaciji su i uporedivi su sa rezultatima sličnih analiza na različitim tipovima endoproteza. Zaključak. Istraživanja opisana u radu predstavljaju osnovu za usavršavanje procesa projektovanja endoproteza zgloba kuka i njihovo prilagođavanje svakom bolesniku posebno (custom made).
Reference
Callaghan J, Rosenberg A, Rubash H. The adult hip. Philadelphia: Lippincott Williams & Wilkins; 2007.
Heller MO, Bergmann G, Kassi JP, Claes L, Haas NP, Duda GN. Determination of muscle loading at the hip joint for use in pre-clinical testing. J Biomech 2005; 38(5): 1155−63.
Garellick G, Karrbolm J, Rogmark C, Herberts P. Annual Report 2010. Swedish Hip Arthroplasty Register; 2011.
Katoozian H, Davy DT. Effects of loading conditions and objective function on three-dimensional shape optimization of femoral components of hip endoprostheses. Medical Engineering & Physics 2000; 22(4): 243−51.
Bennett D, Goswami T. Finite element analysis of hip stem de-signs. Materials & Design 2008; 29(1): 45−60.
Weinans H, Sumner DR, Igloria R, Natarajan RN. Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models. J Biomech 2000; 33(7): 809−17.
Schileo E, Taddei F, Cristofolini L, Viceconti M. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture lo-cation on human femurs tested in vitro. J Biomech 2008; 41(2): 356−67.
Peters CL, Bachus KN, Craig MA, Higginbotham TO. The effect of femoral prosthesis design on cement strain in cemented total hip arthroplasty. J Arthroplasty 2001; 16(2): 216−24.
Bombeli R. Osteoarthritis of the hip: Classification and patho-genesis: the role of osteotomy as a consequent therapy. Berlin: Springer-Verlag; 1983.
Tabaković S, Živković A, Grujić J, Zeljković M. Using CAD/CAE software systems in the design process of modular, revision total hip endoprosthesis. AJME 2011; 9(2): 97−6.
An YH, Draughn RA. Mechanical testing of bone and the bone-implant interface. New York: Taylor & Francis; 2010.
Miles AW, Tanner KE. Strain Measurement in Biomechanics. London: Chapman & Hall; 1992.
