Promene aktivnosti superoksid dizmutaze kod bolesnika sa shizofrenijom zavisno od starosti
Sažetak
Uvod/Cilj. Superoksid dizmutaza (SOD) je važan enzim u detoksikaciji superoksid radikala, primarne reaktivne vrste u većini bioloških procesa u kojima se stvaraju slobodni radikali. Podaci o aktivnosti SOD kod bolesnika sa shizofrenijom su nekonzistentni. Mnogobrojne studije pokazale su da je SOD povećana kod bolesnika sa hroničnom formom shizofrenije. S druge strane, snižena aktivnost SOD nađena je kod bolesnika u prvoj epizodi bolesti, kod obolelih koji nikada nisu bili na terapiji antipsihoticima i kod hroničnih, lečenih i nelečenih bolesnika. Cilj rada bio je da se ispita uticaj pola, životnog doba, vremena pojave bolesti, trajanja bolesti, broja psihotičnih epizoda, herediteta, predominantne simptomatologije i klase primenjivanih antipsihotika na aktivnost eritrocitne SOD kod bolesnika sa shizofrenijom. Metode. Ispitano je 68 bolesnika sa shizofrenijom (29 muškaraca i 39 žena) starosti od 18 do 61 godine, podeljenih u dve grupe (< 34 godine i > 34 godine). Aktivnost SOD merena je u hemolizatu eritrocita komercijalnim testom Ransod. Rezultati. U grupi bolesnika mlađih od 34 godine aktivnost SOD bila je značajno viša (1 381 ± 273 U/gHb; p = 0.038) nego aktivnost SOD u grupi starijih bolesnika (1 231 ± 206 U/gHb). Nije utvrđena značajna razlika u aktivnosti SOD među grupama u pogledu pola i herediteta. Značajna razlika u aktivnosti enzima nađena je između mlađih i starijih bolesnika kod kojih je bolest počela posle 24. godine starosti (1 408 ± 217 U/gHb prema 1 252 ± 213 U/gHb; p = 0,031). Bolesnici mlađe grupe koji su imali više od jedne psihotične epizode imali su značajno višu aktivnost SOD (1 492 ± 298 U/gHb; p = 0,009) od onih koji su imali samo jednu epizodu (1 256 ± 177 U/gHb) i od bolesnika starije grupe koja je imala više od jedne epizode (1 253 ± 231 U/gHb, p = 0,014). Mada dužina trajanja bolesti nije pokazala statistički značajnu razliku u aktivnosti enzima među grupama, značajna negativna korelacija uočena je između trajanja bolesti i aktivnosti SOD (r = -0,511; p < 0,01). Nije nađena značajna razlika u aktivnosti enzima između grupa sa različitim skorovima skale pozitivnih i negativnih simptoma (PANSS). Antipsihotici prve generacije bili su udruženi sa povišenom aktivnošću enzima u obe grupe. Simultano lečenje bolesnika antipsihoticima prve i druge generacije izazivalo je značajan pad aktivnosti SOD u grupi mlađih bolesnika. Zaključak. Dobijeni rezultati pokazuju da je aktivnost eritrocitne SOD povišena u ranoj fazi shizofrenije i da zavisi od godina života bolesnika na početku bolesti, broja psihotičnih epizoda, trajanja bolesti i klase primenjivanih antipsihotika.
Reference
Ghafourifar P, Bringold U, Klein SD, Richter C. Mitochondrial Ni-tric Oxide Synthase, Oxidative Stress and Apoptosis. Neuro-signals 2001; 10(1−2): 57−65.
Jewett SL, Olmstead HK, Marach JA, Rojas F, Silva K. Anion pro-tection of CuZnSOD during peroxidative activity with H2O2. Biochem Biophys Res Commun 2000; 274(1): 57−60.
Nicholls DG, Budd SL. Neuronal excitotoxicity: The role of the mitochondria. Biofactors 1998; 8(3–4): 287−99.
Muller FL, Song W, Liu Y, Chaudhuri A, Pieke-Dahl S, Strong R, et al. Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radic Biol Med 2006; 40(11): 1993−2004.
Elchuri S, Oberley TD, Qi W, Eisenstein RS, Jackson RL, Van RH, et al. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Onco-gene 2005; 24(3): 367−80.
Li Y, Huang T, Carlson EJ, Melov S, Ursell PC, Olson JL, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genetics 1995; 11(4): 376−81.
Flatow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry 2013; 74(6): 400−9.
Wu Z, Zhang XY, Wang H, Tang W, Xia Y, Zhang FX, et al. El-evated plasma superoxide dismutase in first-episode and drug naïve patients with schizophrenia: Inverse association with positive symptoms. Prog Neuropsychopharmacol Biol Psychi-atry 2012; 36(1): 34−8.
Vidović B, Milovanović S, Đorđević B, Kotur-Stevuljević J, Stefanović A, Ivanišević J, et al. Effect of alpha-lipoic acid supplementation on oxidative stress markers and antioxidative defense in patients with schizophrenia. Psychiatr Danub 2014; 26(3): 205−13.
Altuntas I, Aksoy H, Coskun I, Caykoylu A, Akcay F. Erythrocyte superoxide dismutase and glutathione peroxidase activities, and malondialdehyde and reduced glutathione levels in schizo-phrenic patients. Clin Chem Lab Med 2000; 38(12): 1277−81.
Dasgupta J, Dasgupta S, Rajni R, Singh K. Role of free radicals and antioxidants in schizophrenia. IJPCBS 2014; 4(4): 825−8.
Dadheech G, Mishra S, Gautam S, Sharma P. Evaluation of anti-oxidant deficit in schizophrenia. Indian J Psychiatr 2008; 50(1): 16−20.
Gonzalez-Liencres C, Tas C, Brown EC, Erdin S, Onur E, Cubuk-coglu Z, et al. Oxidative stress in schizophrenia: A case-control study on the effects on social cognition and neurocognition. BMC Psychiatry 2014; 14(1): 268.
Wu JQ, Chen DC, Tan YL, Soares JC, Zhang XY. Mn-superoxide dismutase activity is associated with orofacial involuntary movements in schizophrenia patients with tardive dyskinesia. Hum Psychopharmacol Clin Exp 2015; 30(1): 57−63.
Wu JQ, Chen DC, Tan YL, Tan S, Wang Z, Yang F, et al. Asso-ciation of altered CuZn superoxide dismutase and cognitive impairment in schizophrenia patients with tardive dyskinesia. J Psychiatr Res 2014; 58: 167−74.
Wu JQ, Chen DC, Tan YL, Tan SP, Wang ZR, Xiu MH, et al. Cognition impairment in schizophrenia patients with tardive dyskinesia: Association with plasma superoxide dismutase ac-tivity. Schizophr Res 2014; 152(1): 210−6.
Guemouri L, Artur Y, Herbeth B, Jeandel C, Cuny G, Siest G. Bio-logical variability of superoxide dismutase, glutathione peroxi-dase, and catalase in blood. Clin Chem 1991; 37(11): 1932−7.
Inal ME, Kanbak G, Sunal E. Antioxidant enzyme activities and malondialdehyde levels related to aging. Clin Chim Acta 2001; 305(1−2): 75−80.
de la Torre MR, Casado A, Lopez-Fernandez ME. Superoxide dis-mutase (SOD) and aging. Sangre (Barc) 1992; 37(3): 193−5.
Ademoglu E, Ozcan K, Kucuk ST, Gurdol F. Age-related changes in the activity and expression of manganese superoxide dis-mutase, and mitochondrial oxidant generation in female and male rats. Turk J Biochem 2013; 38(4): 445−50.
Abdalla DS, Monteiro HP, Oliveira JA, Bechara EJ. Activities of superoxide dismutase and glutathione peroxidase in schizo-phrenic and manic-depressive patients. Clin Chem 1986; 32(5): 805−7.
Zhang XY, Zhou DF, Shen YC, Zhang PY, Zhang WF, Liang J, et al. Effects of risperidone and haloperidol on superoxide dis-mutase and nitric oxide in schizophrenia. Neuropharmacol 2012; 62(5−6): 1928−34.
Rukmini MS, D'souza B, D'souza V. Superoxide dismutase and catalase activities and their correlation with malondialdehyde in schizophrenic patients. Indian J Clin Biochem 2004; 19(2): 114−8.
Fendri C, Mechri A, Khiari G, Othman A, Kerkeni A, Gaha L. Ox-idative stress involvement in schizophrenia pathophysiology: a review. Encephale 2006; 32(2 Pt 1): 244−52. (French)
Zhang XY, Tan YL, Cao LY, Wu GY, Xu Q, Shen Y, et al. Anti-oxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr Res 2006; 81(2−3): 291−300.
Michel TM, Thome J, Martin D, Nara K, Zwerina S, Tatschner T, et al. Cu, Zn- and Mn-superoxide dismutase levels in brains of patients with schizophrenic psychosis. J Neural Transm 2004; 111(9): 1191−201.
Lee BH, Kim YK. Reduced plasma nitric oxide metabolites be-fore and after antipsychotic treatment in patients with schizo-phrenia compared to controls. Schizophr Res 2008; 104(1−3): 36−43.
Arai M, Miyashita M, Kobori A, Toriumi K, Horiuchi Y, Itokawa M. Carbonyl stress and schizophrenia. Psychiatry Clin Neurosci 2014; 68(9): 655−65.
Okusaga OO. Accelerated aging in schizophrenia patients: The potential role of oxidative stress. Aging Dis 2014; 5(4): 256−62.
Cabungcal JH, Counotte DS, Lewis EM, Tejeda HA, Piantadosi P, Pollock C, et al. Juvenile antioxidant treatment prevents adult deficits in a developmental model of schizophrenia. Neuron 2014; 83(5): 1073−84.
Hodgson EK, Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: Inactivation of the enzyme. Biochemistry 1975; 14(24): 5294−9.
Hitzeroth A, Niehaus DJ, Koen L, Botes WC, Deleuze JF, Warnich L. Association between the MnSOD Ala-9Val polymorphism and development of schizophrenia and abnormal involuntary movements in the Xhosa population. Prog Neuropsycho-pharmacol Biol Psychiatry 2007; 31(3): 664−72.
Hori H. Manganese Superoxide dismutase gene polymorphism and schizophrenia relation to tardive dyskinesia. Neuropsychopharmacology 2000; 23(2): 170−7.
Yang ZX, Feng ZD, Yuan CL, Yan ZP, Ying WG, Cun SY. The effect of risperidone treatment on superoxide dismutase in schizophrenia. J Clin Psychopharmacol 2003; 23(2): 128−31.
Lohr JB, Browning JA. Free radical involvement in neuropsychi-atric illnesses. Psychopharmacol Bull 1995; 31(1): 159−65.
Parikh V, Khan MM, Mahadik SP. Differential effects of anti-psychotics on expression of antioxidant enzymes and mem-brane lipid peroxidation in rat brain. J Psychiatr Res 2003; 37(1): 43−51.
Yao JK, Reddy R, Mcelhinny LG, van Kammen DP. Effects of haloperidol on antioxidant defense system enzymes in schizo-phrenia. J Psychiatr Res 1998; 32(6): 385−91.
Qing H, Xu H, Wei Z, Gibson K, Li X. The ability of atypical antipsychotic drugs vs. haloperidol to protect PC12 cells against MPP+-induced apoptosis. Eur J Neurosci 2003; 17(8): 1563−70.
