Kompleksna modulacijа sila tokom preciznog hvata šake primenom ponavljane transkranijalne magnetne stimulacije pražnjenjima u teta frekvenciji iznad dorzalnog premotornog korteksa

  • Dragana Drljačić University of Belgrade, Faculty of Sport and Physical Education Belgrade Serbia; Preschool Teacher Training College, Šabac, Serbia.
  • Sanja Pajić University of Belgrade, Faculty of Biology, Belgrade, Serbia
  • Aleksandar Nedeljković University of Belgrade, Faculty of Sport and Physical Education Belgrade Serbia
  • Sladjan D Milanović University of Belgrade, Institute for Medical Research, Belgrade, Serbia.
  • Tihomir V Ilić Clinic of Neurology, Military Medical Academy, Belgrade, Serbia; Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia.
Ključne reči: motor cortex||, ||motorna kora, transcranial magnetic stimulation||, ||transkranijalna magnetna stimulacija, hand strength||, ||ruka, snaga,

Sažetak


Uvod/Cilj. Adaptivna kontrola i sinhronizacija sila prstiju šake tokom preciznog hvata pri manipulisanju malim predmetima jednom rukom predstavlja ilustrativni primer visoko frakcionisanih pokreta koji predstavljaju temelj motorne kontrole preciznih pokreta. Pretpostavlja se da ovim procesom upravlјa nekoliko motornih oblasti frontalnog režnja, i to prvenstveno primarni motorni (M-1) i dorzalni premotorni korteks (PMd). Cilj istraživanja bio je ispitivanje uloge PMd-a tokom vršenja pokreta koji zahtevaju finu koordinaciju sila prstiju šake. U istraživanju smo primenili ponavljanu magnetnu stimulaciju pražnjenjima u teta frekvenciji, kako bi ometali neuralno procesiranje u toj oblasti moždane kore. Metode. Primenom jednostrano slepe studije, uz nasumičnu raspodelu i ukršteni dizajn, 10 zdravih ispitanika (29 ± 3,9 godina) bilo je izloženo pojedinačnim sesijama kontinuirane magnetne stimulacije (cTBS600), ili intermitentne ponavljane magnetne stimulacije (iTBS600), pražnjenjima u teta frekvenciji  kao i prividnoj stimulaciji iznad PMd regiona dominantne hemisfere, odvojenih međusobno, najkraće nedelju dana. Precizanost hvata šake i podizanja procenjivani su uređajem koji je registrovao silu stiska (G) i silu podizanja (L) prilikom izvođenja tri zadatka (zadatak sa zadatim profilom L, zadatak sa oscilatornim variranjem nivoa L i zadatak sa podizanjem), koji su izvođeni sa obe ruke odvojeno, i to pre i nakon svake intervencije. Rezultati. Nakon primene iTBS protokola zabeleženo je poboljšanje izvođenja iskazano konstantnom greškom (CE) u zadatku sa oscilatornim variranjem nivoa L, kada je izvođen dominantnom rukom (DH), p = 0.009. Suprotno tome, primena cTBS protokola dovela je do smanjenja promenjive greške (VE) za nedominantnu ruku (NH), p = 0.005. Sa aspekta koordinacije sila utvrđeno je da je iTBS protokol doveo do pogoršanja rezultata praćenih pokazatelja za nedominantnu ruku (G/L odnos, p = 0.017; korelacija G i L, p = 0.047; prirast sile p = 0.047). Zaključak. Rezultati našeg istraživanja ukazuju na mogućnost modulacije sila prstiju šake tokom preciznog hvata i podizanja, ukoliko se TBS primeni iznad PMd-a. Dobijeni nalazi podržavaju ulogu PMd u motornoj kontroli i generisanju sila neophodnih za stabilno držanje malih predmeta kod ljudi.

Reference

Whishaw IQ, Karl JM. The contribution of the reach and the grasp to shaping brain and behaviour. Can J Exp Psychol 2014; 68(4): 223−35.

Napier JR. Studies of the hands of living primates. Proc Zool Soc (London) 1960; 134(6): 647−57.

Johansson RS, Westling G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 1984; 56(3): 550−64.

Jaric S, Uygur M. Assessment of hand function through the coordination of contact forces in manipulation tasks. J Hum Kinet 2013; 36: 5−15.

Danion F. The contribution of non-digital afferent signals to grip force adjustments evoked by brisk unloading of the arm or the held object. Clin Neurophysiol 2007; 118(1): 146−54.

Macefield VG, Johansson RS. Control of grip force during re-straint of an object held between finger and thumb: Responses of muscle and joint afferents from the digits. Exp Brain Res 1996; 108(1): 172−84.

Häger-Ross C, Johansson RS. Nondigital afferent input in reactive control of fingertip forces during precision grip. Exp Brain Res 1996; 110(1): 131−41.

Johansson RS, Birznieks I. First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat Neurosci 2004; 7(2): 170−7.

Johansson RS, Flanagan J. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 2009; 10(5): 345−59.

Geyer S, Matelli M, Luppino G, Zilles K. Functional neuroanatomy of the primate isocortical motor system. Anat Embryol 2000; 202(6): 443−74.

Hao Y, Zhang Q, Controzzi M, Cipriani C, Li Y, Li J, et al. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex. J Neural Eng 2014; 11(6): 66011.

Walsh V, Cowey A. Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 2000; 1(1): 73−9.

Castiello U, Begliomini C. The cortical control of visually guided grasping. Neuroscientist 2008; 14(2): 157−70.

Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M. Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp Brain Res 1988; 71(3): 491−507.

Rizzolatti G, Luppino G. The cortical motor system. Neuron 2001; 31(6): 889−901.

Rizzolatti G, Luppino G, Matelli M. The organization of the cor-tical motor system: New concepts. Electroencephalogr Clin Neurophysiol 1998; 106(4): 283−96.

Kollias SS, Alkadhi H, Jaermann T, Crelier G, Hepp-Reymond MC. Identification of multiple nonprimary motor cortical areas with simple movements. Brain Res Brain Res Rev 2001; 36(2−3): 185−95.

Nirkko AC, Ozdoba C, Redmond SM, Bürki M, Schroth G, Hess CW, et al. Different ipsilateral representations for distal and proximal movements in the sensorimotor cortex: Activation and deactivation patterns. Neuroimage 2001; 13(5): 825−35.

Keel JC, Smith MJ, Wassermann EM. A safety screening ques-tionnaire for transcranial magnetic stimulation. Clin Neuro-physiol 2001; 112(4): 720.

Oldfield RC. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971; 9(1): 97−113.

Krishnan V, Jaric S. Hand function in multiple sclerosis: Force coordination in manipulation tasks. Clin Neurophysiol 2008; 119(10): 2274−81.

Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic prin-ciples and procedures for routine clinical and research applica-tion. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015; 126(6): 1071−107.

Rossi S, Hallett M, Rossini PM, Pascual-Leone A; Safety of TMS Consensus Group. Safety, ethical considerations, and applica-tion guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009; 120(12): 2008−39.

Busan P, Barbera C, Semenic M, Monti F, Pizzolato G, Pelamatti G, et al. Effect of transcranial magnetic stimulation (TMS) on pa-rietal and premotor cortex during planning of reaching move-ments. PLoS ONE 2009; 4(2): e4621.

Jaric S, Knight CA, Collins JJ, Marwaha R. Evaluation of a me-thod for bimanual testing coordination of hand grip and load forces under isometric conditions. J Electromyogr Kinesiol 2005; 15(6): 556−63.

Freitas PB, Krishnan V, Jaric S. Force coordination in static ma-nipulation tasks: Effects of the change in direction and han-dedness. Exp Brain Res 2007; 183(4): 487−97.

Westling G, Johansson RS. Factors influencing the force control during precision grip.Exp Brain Res 1984; 53(2): 277−84.

Flanagan JR, Tresilian JR. Grip-load force coupling: A general control strategy for transporting objects. J Exp Psychol Hum Percept Perform 1994; 20(5): 944−57.

Zatsiorsky VM, Gao F, Latash ML. Motor control goes beyond physics: differential effects of gravity and inertia on finger forces during manipulation of hand-held objects. Exp Brain Res 2005; 162(3): 300−8.

Flanagan JR, Wing AM. Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res 1993; 95(1): 131−43.

Flanagan JR, Tresilian J, Wing AM. Coupling of grip force and load force during arm movements with grasped objects. Neu-rosci Lett 1993; 152(1−2): 53−6.

Chouinard PA, Van DW, Leonard G, Paus T. Modulating neural networks with transcranial magnetic stimulation applied over the dorsal premotor and primary motor cortices. J Neurophy-siol 2003; 90(2): 1071−83.

Chouinard PA, Leonard G, Paus T. Role of the primary motor and dorsal premotor cortices in the anticipation of forces dur-ing object lifting. J Neurosci 2005; 25(9): 2277−84.

Petrides M. Deficits in non-spatial conditional associative learn-ing after periarcuate lesions in the monkey. Behav Brain Res 1985; 16(2−3): 95−101.

Halsband U, Freund HJ. Premotor cortex and conditional motor learning in man. Brain 1990; 113(Pt 1): 207–22.

Huang Y, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron 2005; 45(2): 201−6.

Carson RG. Neural pathways mediating bilateral interactions between the upper limbs. Brain Res Brain Res Rev 2005; 49(3): 641−62.

Lenzi D, Conte A, Mainero C, Frasca V, Fubelli F, Totaro P, et al. Effect of corpus callosum damage on ipsilateral motor activa-tion in patients with multiple sclerosis: A functional and ana-tomical study. Hum Brain Mapp 2007; 28(7): 636−44.

Grefkes C, Eickhoff SB, Nowak DA, Dafotakis M, Fink GR. Dy-namic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. Neuroimage 2008; 41(4): 1382−94.

Fling BW, Benson BL, Seidler RD. Transcallosal sensorimotor fi-ber tract structure-function relationships. Hum Brain Mapp 2013; 34(2): 384−95.

Di Lazzaro V, Pilato F, Dileone M, Profice P, Oliviero A, Mazzone P, et al. The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. J Physiol (Lond) 2008; 586(Pt 16): 3871−9.

Kinsbourne M. Mechanisms of hemispheric interaction in man. In: Kinsbourne M, Smith W, editors. Hemispheric disconnection and cerebral function. Springfield, IL: Thomas; 1974. p. 260−85.

Neva JL, Singh AM, Vesia M, Staines WR. Selective modulation of left primary motor cortex excitability after continuous theta burst stimulation to right primary motor cortex and bimanual training. Behav Brain Res 2014; 269: 138−46.

Objavljeno
2017/07/07
Broj časopisa
Rubrika
Originalni članak