Relativna učestalost nezrelog podtipa ćelija CD34+/CD90+ u perifernoj krvi posle mobilizacije je u tesnoj i obrnutoj korelaciji sa apsolutnim brojem matičnih ćelija u afereznom produktu kod bolesnika sa multiplim mijelomom

  • Bela Balint Institute for Transfusiology and Hemobiology, Military Medical Academy, Belgrade, Serbia; Institute for Medical Research, University of Belgrade, Serbia; Serbian Academy of Sciences and Arts; Faculty of Medicine of Military Medical Academy, University of Defence, Belgrade, Serbia;
  • Ivan Stanojević Military Medical Academy, Institute for Medical Research, Belgrade, Serbia The University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
  • Milena Todorović Clinical Center of Serbia, Clinic for Hematology, Belgrade, Serbia
  • Dragana Stamatović Military Medical Academy, Clinic for Hematology, Belgrade, Serbia; University of Belgrade,The University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia
  • Mirjana Pavlović Department of Computer and Electrical Engineering and Computer Science, FAU, VL, USA
  • Danilo Vojvodić The University of Defence, Faculty of Medicine of the Military Medical Academy, Belgrade, Serbia Military Medical Academy, Institute for Medical Research, Belgrade, Serbia
Ključne reči: stem cells||, ||ćelije, matične, hematopoietic stem cell transplantation||, ||transplantacija hematopoeznih matičnih ćelija, bone marrow||, ||kostna srž, flow cytometry||, ||citometrija, protočna, multiple myeloma||, ||multipli mijelom, antineoplastic combined chemotherapy protocols||, ||lečenje kombinovanjem antineoplastika, protokoli,

Sažetak


Uvod/Cilj. Matične ćelije (MĆ) obezbeđuju kompletnu/dugotrajnu repopulaciju kostne srži (KS) posle transplantacije. Cilj ove studije bila je procena apsolutnog broja ukupnih MĆ (utvrđena protokolom „ISHAGE-sequential-gating” – Stem-Cellish [SCish]) i relativne učestalosti primitivnih podipova CD34+/CD90+ (CD90+SCish) u perifernoj krvi (PK) kao prediktora efikasnosti mobilizacije i pokazatelja kvaliteta afereznog produkta (AP). Metode. Mobilizacija je postignuta hemioterapijom/faktor-rasta-granulocitopoeze (G-CSF). Prikupljanje je izvedeno pomoću sistema Spectra-Optia-IDL. Ćelije SCsish determinisane su kao konstitutivni deo CD34+ u regiji-matičnih-ćelija („stem-cell-region“) upotrebom protočnog citometra FC-500. U ovoj studiji, originalni protokol „ISHAGE-sequential-gating” modifikovan je uvođenjem monoklonskog antitela anti-CD90-PE radi analize ekspresije antigena CD90 na ćelijama SCish (CD90+SCish). Rezultati su prikazani kao procenat ćelija SCish u odnosu na broj nukleisanih ćelija, apsolutni broj SCish u mL PK ili AP, procenat ćelija CD90+SCish izražen u odnosu na SCish i apsolutni broj CD90+SCish u mL PK ili AP. Rezultati. Apsolutni broj ukupnih ćelija SCish i CD90+SCish bio je značajno (p = 0,0007 i p = 0,0266) veći u uzorcima AP nasuprot PK. Indeks CD90+SCish/ukupne SCish u uzorku PK je bio veći od indeksa u uzorku AP (p = 0,039). Relativna učestalost CD90+SCish pokazala je vrlo značajnu inverznu korelaciju sa apsolutnim brojem ukupnih SCish u PK i AP (p = 0.0003 i p = 0,0013). Relativna učestalost ćelija CD90+SCish u PK takođe je pokazala značajnu (p = 0,0002) inverznu korelaciju sa apsolutnim brojem ukupnih ćelija SCish. Bolesnici sa manje od 10% CD90+SCish u PK su imali značajno (p = 0,0025) veći apsolutni broj ukupnih SCish ćelija u AP. Zaključak. Smatramo da niži prinos CD90+SCish u AP nije prouzrokovan manje efikasnim prikupljanjem, već je najverovatnije posledica različitih, još uvek samo delimično razjašnjenih, citomorfoloških/biofizičkih osobina manje zrelih MĆ. Zato, posle mobilizacije hemoterapijom/G-CSF nameću se logična pitanja - da li bi trebalo pratiti apsolutni broj ukupnih SCish ćelija ili je celishodnije testirati relativnu učestalost CD90+SCish pre sprovođenja afereznog prikupljanja MĆ. Za donošenje definitivnih zaključaka neophodna su buduća kontrolisana i sveobuhvatnija istraživanja MĆ, u vezi sa utvrđivanjem korelacije cirkulišućih i priku-pljenih ćelija sa hematopoetskim oporavkom bolesnika.

Reference

Pavlović M, Balint B. Stem cells and tissue engineering. New York, NY: Springer; 2013.

Balint B, Stamatović D, Todorović M, Jevtić M, Ostojić G, Pavlović M, et al. Stem cells in the arrangement of bone marrow repopulation and regenerative medicine. Vojnosanit Pregl 2007; 64(7): 481‒4.

Obradović D, Tukić L, Radovinović-Tasić S, Petrović B, Elez M, Ostojić G, et al. Autologous hematopoietic stem cell transplantation in combination with immunoablative protocol in secondary progressive multiple sclerosis ‒ A 10-year follow-up of the first transplanted patient. Vojnosanit Pregl 2016; 73(5): 504‒8.

Barnett D, Janossy G, Lubenko A, Matutes E, Newland A, Reilly JT. Guideline for the flow cytometric enumeration of CD34+ haematopoietic stem cells. Prepared by the CD34+ haematopoietic stem cell working party. General Haematology Task Force of the British Committee for Standards in Haematology. Clin Lab Haematol 1999; 21(5): 301‒8.

Keeney M, Chin-Yee I, Weir K, Popma J, Nayar R, Sutherland DR. Single platform flow cytometric absolute CD34+ cell counts based on the ISHAGE guidelines. International Society of Hematotherapy and Graft Engineering. Cytometry 1998; 34(2): 61‒70.

Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee I. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother 1996; 5(3): 213‒26.

Thornley I, Sutherland R, Wynn R, Nayar R, Sung L, Corpus G, et al. Early hematopoietic reconstitution after clinical stem cell transplantation: evidence for stochastic stem cell behavior and limited acceleration in telomere loss. Blood 2002; 99(7): 2387‒96.

Thornley I, Sutherland DR, Nayar R, Sung L, Freedman MH, Messner HA. Replicative stress after allogeneic bone marrow transplantation: changes in cycling of CD34+CD90+ and CD34+CD90- hematopoietic progenitors. Blood 2001; 97(6): 1876‒8.

Whitby A, Whitby L, Fletcher M, Reilly JT, Sutherland DR, Keeney M, et al. ISHAGE protocol: are we doing it correctly? Cytometry B Clin Cytom 2012; 82(1): 9‒17.

Pratt G, Rawstron AC, English AE, Johnson RJ, Jack AS, Morgan GJ, et al. Analysis of CD34+ cell subsets in stem cell harvests can more reliably predict rapidity and durability of engraftment than total CD34+ cell dose, but steady state levels do not correlate with bone marrow reserve. Br J Haematol 2001; 114(4): 937‒43.

Sumikuma T, Shimazaki C, Inaba T, Ochiai N, Okano A, Hatsuse M, et al. CD34+/CD90+ cells infused best predict late haematopoietic reconstitution following autologous peripheral blood stem cell transplantation. Br J Haematol 2002; 117(1): 238‒44.

Villaron EM, Almeida J, Lopez-Holgado N, Sanchez-Guijo FM, Alberca M, Blanco B, et al. In leukapheresis products from non-Hodgkin's lymphoma patients, the immature hematopoietic progenitors show higher CD90 and CD34 antigenic expression. Transfus Apher Sci 2007; 37(2): 145‒56.

Skoric D, Balint B, Petakov M, Sindjic M, Rodic P. Collection strategies and cryopreservation of umbilical cord blood. Transfus Med 2007; 17(2): 107‒13.

Balint B, Ivanović Z, Petakov M, Taseski J, Jovcić G, Stojanović N, et al. The cryopreservation protocol optimal for progenitor recovery is not optimal for preservation of marrow repopulating ability. Bone Marrow Transplant 1999; 23(6): 613‒9.

Balint B, Ljubenov M, Stamatović D, Todorović M, Pavlović M, Ostojić G, et al. Stem cell harvesting protocol research in autologous transplantation setting: large volume vs. conventional cytapheresis. Vojnosanit Pregl 2008; 65(7): 545‒51.

Goldman JM, Th'ng KH, Park DS, Spiers AS, Lowenthal RM, Ruutu T. Collection, cryopreservation and subsequent viability of haemopoietic stem cells intended for treatment of chronic granulocytic leukaemia in blast-cell transformation. Br J Haematol 1978; 40(2): 185‒95.

Chang YJ, Xu LP, Liu DH, Liu KY, Han W, Chen YH, et al. Platelet engraftment in patients with hematologic malignancies following unmanipulated haploidentical blood and marrow transplantation: effects of CD34+ cell dose and disease status. Biol Blood Marrow Transplant 2009; 15(5): 632‒8.

Haas R, Möhle R, Pförsich M, Fruehauf S, Witt B, Goldschmidt H, et al. Blood-derived autografts collected during granulocyte colony-stimulating factor-enhanced recovery are enriched with early Thy-1+ hematopoietic progenitor cells. Blood 1995; 85(7): 1936‒43.

Balint B, Stamatovic D, Todorovic M, Elez M, Vojvodic D, Pavlovic M, et al. Autologous transplant in the treatment of severe aplastic anemia--a case report. Transfus Apher Sci 2011; 45(2): 137‒41.

Balint B, Kanjuh V, Todorovic-Balint M, Ostojic G, Stamatovic D, Obradovic S, et al. Cobe-Spectra vs. Spectra-Optia apheresis systems – an overview of current status and a comparative research. Bilt Transfuziol 2014; 60(1–2): 1–5.

Radley JM, Ellis S, Palatsides M, Williams B, Bertoncello I. Ultrastructure of primitive hematopoietic stem cells isolated using probes of functional status. Exp Hematol 1999; 27(2): 365‒9.

Sharma S, Cabana R, Shariatmadar S, Krishan A. Cellular volume and marker expression in human peripheral blood apheresis stem cells. Cytometry A 2008; 73(2): 160‒7.

Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ. Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 2005; 19(7): 1118‒27.

Angelopoulou MK, Tsirkinidis P, Boutsikas G, Vassilakopoulos TP, Tsirigotis P. New insights in the mobilization of hematopoietic stem cells in lymphoma and multiple myeloma patients. Biomed Res Int 2014; 2014: 835138.

Lidonnici MR, Aprile A, Frittoli MC, Mandelli G, Paleari Y, Spinelli A, et al. Plerixafor and G-CSF combination mobilizes hematopoietic stem and progenitors cells with a distinct transcriptional profile and a reduced in vivo homing capacity compared to plerixafor alone. Haematologica 2017; 102(4): e120‒4.

Objavljeno
2017/11/28
Rubrika
Kratko saopštenje