Medicinal chemistry of histone deacetylase inhibitors

  • Dušan Ružić Univeristy of Belgrade-Faculty of Pharmacy, Department of Pharmaceutical Chemistry
  • Nemanja Djoković University of Belgrade-Faculty of Pharmacy, Department of Pharmaceutical Chemistry
  • Katarina Nikolić University of Belgrade-Faculty of Pharmacy, Department of Pharmaceutical Chemistry
  • Zorica Vujić University of Belgrade-Faculty of Pharmacy, Department of Pharmaceutical Chemistry
Keywords: Histone deacetylases, sirtuins, inhibitors, epigenetics, acetylome

Abstract


Today, we are witnessing an explosion of scientific concepts in cancer chemotherapy. It has been considered for a long time that genetic instability in cancer should be treated with drugs that directly damage the DNA. Understanding the molecular basis of malignant diseases shed light on studying phenotypic plasticity. In the era of epigenetics, many efforts are being made to alter the aberrant homeostasis in cancer without modifying the DNA sequence. One such strategy is modulation of the lysine acetylome in human cancers. To remove the acetyl group from the histones, cells use the enzymes that are called histone deacetylases (HDACs). The disturbed equilibrium between acetylation and deacetylation on lysine residues of histones can be manipulated with histone deacetylase inhibitors (HDACi).
Throughout the review, an effort will be made to present the mechanistic basis of targeting the HDAC isoforms, discovered selective HDAC inhibitors, and their therapeutical implications and expectations in modern drug discovery.

References

Jenuwein T, Allis CD. Translating the Histone Code. Science. 2001 Aug 10;293(5532):1074–80.

Peterson CL, Laniel M-A. Histones and histone modifications. Curr Biol. 2004 Jul 27;14(14):R546–51.

Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016 Aug;17(8):487–500.

Rousseaux S, Khochbin S. Histone Acylation beyond Acetylation: Terra Incognita in Chromatin Biology. Cell J. 2015;17(1):1–6.

LeRoy G, DiMaggio PA, Chan EY, Zee BM, Blanco MA, Bryant B, et al. A quantitative atlas of histone modification signatures from human cancer cells. Epigenetics Chromatin. 2013 Jul 5;6(1):20.

Willcockson MA, Healton SE, Weiss CN, Bartholdy BA, Botbol Y, Mishra LN, et al. H1 histones control the epigenetic landscape by local chromatin compaction. Nature. 2021 Jan;589(7841):293–8.

Xu Y, Zhang S, Lin S, Guo Y, Deng W, Zhang Y, et al. WERAM: a database of writers, erasers and readers of histone acetylation and methylation in eukaryotes. Nucleic Acids Res. 2017 Jan 4;45(D1):D264–70.

Bradbury CA, Khanim FL, Hayden R, Bunce CM, White DA, Drayson MT, et al. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia. 2005 Oct;19(10):1751–9.

Zucchetti B, Shimada AK, Katz A, Curigliano G. The role of histone deacetylase inhibitors in metastatic breast cancer. The Breast. 2019 Feb 1;43:130–4.

Grozinger CM, Hassig CA, Schreiber SL. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci. 1999 Apr 27;96(9):4868–73.

Yang X-J, Grégoire S. Class II Histone Deacetylases: from Sequence to Function, Regulation, and Clinical Implication. Mol Cell Biol. 2005 Apr 15;25(8):2873–84.

Rajan A, Shi H, Xue B. Class I and II Histone Deacetylase Inhibitors Differentially Regulate Thermogenic Gene Expression in Brown Adipocytes. Sci Rep. 2018 Aug 30;8(1):13072.

Wang G, He J, Zhao J, Yun W, Xie C, Taub JW, et al. Class I and Class II Histone Deacetylases Are Potential Therapeutic Targets for Treating Pancreatic Cancer. PLOS ONE. 2012 Dec 14;7(12):e52095.

Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000 Feb;403(6771):795–800.

Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and Functional Characterization of HDAC11, a Novel Member of the Human Histone Deacetylase Family*. J Biol Chem. 2002 Jul 12;277(28):25748–55.

Aramsangtienchai P, Spiegelman NA, He B, Miller SP, Dai L, Zhao Y, et al. HDAC8 Catalyzes the Hydrolysis of Long Chain Fatty Acyl Lysine. ACS Chem Biol. 2016 Oct 21;11(10):2685–92.

Mihaylova MM, Shaw RJ. Metabolic reprogramming by class I and II histone deacetylases. Trends Endocrinol Metab TEM. 2013 Jan;24(1):48–57.

Bolden JE, Shi W, Jankowski K, Kan C-Y, Cluse L, Martin BP, et al. HDAC inhibitors induce tumor-cell-selective pro-apoptotic transcriptional responses. Cell Death Dis. 2013 Feb;4(2):e519–e519.

Chao M-W, Chang L-H, Tu H-J, Chang C-D, Lai M-J, Chen Y-Y, et al. Combination treatment strategy for pancreatic cancer involving the novel HDAC inhibitor MPT0E028 with a MEK inhibitor beyond K-Ras status. Clin Epigenetics. 2019 May 29;11(1):85.

Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999 Sep;401(6749):188–93.

Wang D-F, Wiest O, Helquist P, Lan-Hargest H-Y, Wiech NL. On the function of the 14 A long internal cavity of histone deacetylase-like protein: implications for the design of histone deacetylase inhibitors. J Med Chem. 2004 Jun 17;47(13):3409–17.

Lucy Gantt SM, Decroos C, Lee MS, Gullett LE, Bowman CM, Christianson DW, et al. General Base-General Acid Catalysis in Human Histone Deacetylase 8. Biochemistry. 2016 Feb 9;55(5):820–32.

Sauve AA, Youn DY. Sirtuins: NAD+-dependent deacetylase mechanism and regulation. Curr Opin Chem Biol. 2012 Dec 1;16(5):535–43.

Friend C, Scher W, Holland JG, Sato T. Hemoglobin Synthesis in Murine Virus-Induced Leukemic Cells In Vitro: Stimulation of Erythroid Differentiation by Dimethyl Sulfoxide. Proc Natl Acad Sci. 1971 Feb 1;68(2):378–82.

Breslow R, Jursic B, Yan ZF, Friedman E, Leng L, Ngo L, et al. Potent cytodifferentiating agents related to hexamethylenebisacetamide. Proc Natl Acad Sci. 1991 Jul 1;88(13):5542–6.

Bedalov A, Gatbonton T, Irvine WP, Gottschling DE, Simon JA. Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci. 2001 Dec 18;98(26):15113–8.

Zhou Z, Ma T, Zhu Q, Xu Y, Zha X. Recent advances in inhibitors of sirtuin1/2: an update and perspective. Future Med Chem. 2018 Apr 1;10(8):907–34.

Rajabi N, Galleano I, Madsen AS, Olsen CA. Targeting Sirtuins: Substrate Specificity and Inhibitor Design. Prog Mol Biol Transl Sci. 2018;154:25–69.

Cunliffe VT. Eloquent silence: developmental functions of Class I histone deacetylases. Curr Opin Genet Dev. 2008 Oct 1;18(5):404–10.

Liu J, Kelly J, Yu W, Clausen D, Yu Y, Kim H, et al. Selective Class I HDAC Inhibitors Based on Aryl Ketone Zinc Binding Induce HIV-1 Protein for Clearance. ACS Med Chem Lett. 2020 Jul 9;11(7):1476–83.

Taplick J, Kurtev V, Kroboth K, Posch M, Lechner T, Seiser C. Homo-oligomerisation and nuclear localisation of mouse histone deacetylase 1. J Mol Biol. 2001 Apr 20;308(1):27–38.

Liu J, Yu Y, Kelly J, Sha D, Alhassan A-B, Yu W, et al. Discovery of Highly Selective and Potent HDAC3 Inhibitors Based on a 2-Substituted Benzamide Zinc Binding Group. ACS Med Chem Lett. 2020 Dec 10;11(12):2476–83.

Somoza JR, Skene RJ, Katz BA, Mol C, Ho JD, Jennings AJ, et al. Structural Snapshots of Human HDAC8 Provide Insights into the Class I Histone Deacetylases. Structure. 2004 Jul 1;12(7):1325–34.

Maolanon AR, Madsen AS, Olsen CA. Innovative Strategies for Selective Inhibition of Histone Deacetylases. Cell Chem Biol. 2016 Jul 21;23(7):759–68.

KrennHrubec K, Marshall BL, Hedglin M, Verdin E, Ulrich SM. Design and evaluation of ‘Linkerless’ hydroxamic acids as selective HDAC8 inhibitors. Bioorg Med Chem Lett. 2007 May 15;17(10):2874–8.

Olson DE, Wagner FF, Kaya T, Gale JP, Aidoud N, Davoine EL, et al. Discovery of the first histone deacetylase 6/8 dual inhibitors. J Med Chem. 2013 Jun 13;56(11):4816–20.

Ingham OJ, Paranal RM, Smith WB, Escobar RA, Yueh H, Snyder T, et al. Development of a Potent and Selective HDAC8 Inhibitor. ACS Med Chem Lett. 2016 Oct 13;7(10):929–32.

Hassan MM, Israelian J, Nawar N, Ganda G, Manaswiyoungkul P, Raouf YS, et al. Characterization of Conformationally Constrained Benzanilide Scaffolds for Potent and Selective HDAC8 Targeting. J Med Chem. 2020 Aug 13;63(15):8634–48.

Zhao C, Zang J, Ding Q, Inks ES, Xu W, Chou CJ, et al. Discovery of meta-sulfamoyl N-hydroxybenzamides as HDAC8 selective inhibitors. Eur J Med Chem. 2018 Apr 25;150:282–91.

Heimburg T, Kolbinger FR, Zeyen P, Ghazy E, Herp D, Schmidtkunz K, et al. Structure-Based Design and Biological Characterization of Selective Histone Deacetylase 8 (HDAC8) Inhibitors with Anti-Neuroblastoma Activity. J Med Chem. 2017 Dec 28;60(24):10188–204.

Marek M, Shaik TB, Heimburg T, Chakrabarti A, Lancelot J, Ramos-Morales E, et al. Characterization of Histone Deacetylase 8 (HDAC8) Selective Inhibition Reveals Specific Active Site Structural and Functional Determinants. J Med Chem. 2018 Nov 21;61(22):10000–16.

Taha TY, Aboukhatwa SM, Knopp RC, Ikegaki N, Abdelkarim H, Neerasa J, et al. Design, Synthesis, and Biological Evaluation of Tetrahydroisoquinoline-Based Histone Deacetylase 8 Selective Inhibitors. ACS Med Chem Lett. 2017 Aug 10;8(8):824–9.

Balasubramanian S, Ramos J, Luo W, Sirisawad M, Verner E, Buggy JJ. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia. 2008 May;22(5):1026–34.

Suzuki T, Ota Y, Ri M, Bando M, Gotoh A, Itoh Y, et al. Rapid Discovery of Highly Potent and Selective Inhibitors of Histone Deacetylase 8 Using Click Chemistry to Generate Candidate Libraries. J Med Chem. 2012 Nov 26;55(22):9562–75.

Lahm A, Paolini C, Pallaoro M, Nardi MC, Jones P, Neddermann P, et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc Natl Acad Sci. 2007 Oct 30;104(44):17335–40.

Luo L, Martin SC, Parkington J, Cadena SM, Zhu J, Ibebunjo C, et al. HDAC4 Controls Muscle Homeostasis through Deacetylation of Myosin Heavy Chain, PGC-1α, and Hsc70. Cell Rep. 2019 Oct 15;29(3):749-763.e12.

McGee SL, van Denderen BJW, Howlett KF, Mollica J, Schertzer JD, Kemp BE, et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes. 2008 Apr;57(4):860–7.

Mielcarek M, Landles C, Weiss A, Bradaia A, Seredenina T, Inuabasi L, et al. HDAC4 Reduction: A Novel Therapeutic Strategy to Target Cytoplasmic Huntingtin and Ameliorate Neurodegeneration. PLOS Biol. 2013 Nov 26;11(11):e1001717.

Travers JG, Hu T, McKinsey TA. The black sheep of class IIa: HDAC7 SIKens the heart. J Clin Invest. 2020 Jun 1;130(6):2811–3.

Lobera M, Madauss KP, Pohlhaus DT, Wright QG, Trocha M, Schmidt DR, et al. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat Chem Biol. 2013 May;9(5):319–25.

Shinsky SA, Christianson DW. Polyamine Deacetylase Structure and Catalysis: Prokaryotic Acetylpolyamine Amidohydrolase and Eukaryotic HDAC10. Biochemistry. 2018 Jun 5;57(22):3105–14.

Skultetyova L, Ustinova K, Kutil Z, Novakova Z, Pavlicek J, Mikesova J, et al. Human histone deacetylase 6 shows strong preference for tubulin dimers over assembled microtubules. Sci Rep. 2017 Sep 14;7(1):11547.

Hai Y, Christianson DW. Histone deacetylase 6 structure and molecular basis of catalysis and inhibition. Nat Chem Biol. 2016 Sep;12(9):741–7.

Hai Y, Shinsky SA, Porter NJ, Christianson DW. Histone deacetylase 10 structure and molecular function as a polyamine deacetylase. Nat Commun. 2017 May 18;8(1):15368.

Porter NJ, Mahendran A, Breslow R, Christianson DW. Unusual zinc-binding mode of HDAC6-selective hydroxamate inhibitors. Proc Natl Acad Sci. 2017 Dec 19;114(51):13459–64.

Ruzic D, Petkovic M, Agbaba D, Ganesan A, Nikolic K. Combined Ligand and Fragment-based Drug Design of Selective Histone Deacetylase – 6 Inhibitors. Mol Inform. 2019;38(5):1800083.

Avelar LAA, Ruzic D, Djokovic N, Kurz T, Nikolic K. Structure-based design of selective histone deacetylase 6 zinc binding groups. J Biomol Struct Dyn. 2020 Jul 23;38(11):3166–77.

Bouchet S, Linot C, Ruzic D, Agbaba D, Fouchaq B, Roche J, et al. Extending Cross Metathesis To Identify Selective HDAC Inhibitors: Synthesis, Biological Activities, and Modeling. ACS Med Chem Lett. 2019 Jun 13;10(6):863–8.

Sun X, Xie Y, Sun X, Yao Y, Li H, Li Z, et al. The selective HDAC6 inhibitor Nexturastat A induces apoptosis, overcomes drug resistance and inhibits tumor growth in multiple myeloma. Biosci Rep. 2019 Mar 22;39(3):BSR20181916.

Patil V, Sodji QH, Kornacki JR, Mrksich M, Oyelere AK. 3-Hydroxypyridin-2-thione as novel zinc binding group for selective histone deacetylase inhibition. J Med Chem. 2013 May 9;56(9):3492–506.

Porter NJ, Wagner FF, Christianson DW. Entropy as a Driver of Selectivity for Inhibitor Binding to Histone Deacetylase 6. Biochemistry. 2018 Jul 3;57(26):3916–24.

Géraldy M, Morgen M, Sehr P, Steimbach RR, Moi D, Ridinger J, et al. Selective Inhibition of Histone Deacetylase 10: Hydrogen Bonding to the Gatekeeper Residue is Implicated. J Med Chem. 2019 May 9;62(9):4426–43.

Butler KV, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski AP. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc. 2010 Aug 11;132(31):10842–6.

Herbst-Gervasoni CJ, Christianson DW. Binding of N8-Acetylspermidine Analogues to Histone Deacetylase 10 Reveals Molecular Strategies for Blocking Polyamine Deacetylation. Biochemistry. 2019 Dec 10;58(49):4957–69.

Cao J, Sun L, Aramsangtienchai P, Spiegelman NA, Zhang X, Huang W, et al. HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. Proc Natl Acad Sci. 2019 Mar 19;116(12):5487–92.

Liu S-S, Wu F, Jin Y-M, Chang W-Q, Xu T-M. HDAC11: a rising star in epigenetics. Biomed Pharmacother. 2020 Nov 1;131:110607.

Son SI, Su D, Ho TT, Lin H. Garcinol Is an HDAC11 Inhibitor. ACS Chem Biol. 2020 Nov 20;15(11):2866–71.

Bora-Singhal N, Mohankumar D, Saha B, Colin CM, Lee JY, Martin MW, et al. Novel HDAC11 inhibitors suppress lung adenocarcinoma stem cell self-renewal and overcome drug resistance by suppressing Sox2. Sci Rep. 2020 Mar 13;10(1):4722.

Son SI, Cao J, Zhu C-L, Miller SP, Lin H. Activity-Guided Design of HDAC11-Specific Inhibitors. ACS Chem Biol. 2019 Jul 19;14(7):1393–7.

Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, et al. Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics. 2016 May 25;8(1):61.

Parenti MD, Bruzzone S, Nencioni A, Del Rio A. Selectivity hot-spots of sirtuin catalytic cores. Mol Biosyst. 2015;11(8):2263–72.

Grozinger CM, Chao ED, Blackwell HE, Moazed D, Schreiber SL. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem. 2001 Oct 19;276(42):38837–43.

Heltweg B, Gatbonton T, Schuler AD, Posakony J, Li H, Goehle S, et al. Antitumor Activity of a Small-Molecule Inhibitor of Human Silent Information Regulator 2 Enzymes. Cancer Res. 2006 Apr 15;66(8):4368–77.

Lara E, Mai A, Calvanese V, Altucci L, Lopez-Nieva P, Martinez-Chantar ML, et al. Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene. 2009 Feb;28(6):781–91.

Uciechowska U, Schemies J, Neugebauer RC, Huda E-M, Schmitt ML, Meier R, et al. Thiobarbiturates as Sirtuin Inhibitors: Virtual Screening, Free-Energy Calculations, and Biological Testing. ChemMedChem. 2008;3(12):1965–76.

McCarthy AR, Pirrie L, Hollick JJ, Ronseaux S, Campbell J, Higgins M, et al. Synthesis and biological characterisation of sirtuin inhibitors based on the tenovins. Bioorg Med Chem. 2012 Mar 1;20(5):1779–93.

Yuan H, Wang Z, Li L, Zhang H, Modi H, Horne D, et al. Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis. Blood. 2012 Feb 23;119(8):1904–14.

Mellini P, Kokkola T, Suuronen T, Salo HS, Tolvanen L, Mai A, et al. Screen of pseudopeptidic inhibitors of human sirtuins 1-3: two lead compounds with antiproliferative effects in cancer cells. J Med Chem. 2013 Sep 12;56(17):6681–95.

Disch JS, Evindar G, Chiu CH, Blum CA, Dai H, Jin L, et al. Discovery of thieno[3,2-d]pyrimidine-6-carboxamides as potent inhibitors of SIRT1, SIRT2, and SIRT3. J Med Chem. 2013 May 9;56(9):3666–79.

Karaman B, Alhalabi Z, Swyter S, Mihigo SO, Andrae-Marobela K, Jung M, et al. Identification of Bichalcones as Sirtuin Inhibitors by Virtual Screening and In Vitro Testing. Molecules. 2018 Feb;23(2):416.

Yeong KY, Khaw KY, Takahashi Y, Itoh Y, Murugaiyah V, Suzuki T. Discovery of gamma-mangostin from Garcinia mangostana as a potent and selective natural SIRT2 inhibitor. Bioorganic Chem. 2020 Jan 1;94:103403.

Gey C, Kyrylenko S, Hennig L, Nguyen L-HD, Büttner A, Pham HD, et al. Phloroglucinol Derivatives Guttiferone G, Aristoforin, and Hyperforin: Inhibitors of Human Sirtuins SIRT1 and SIRT2. Angew Chem Int Ed. 2007;46(27):5219–22.

Süssmuth SD, Haider S, Landwehrmeyer GB, Farmer R, Frost C, Tripepi G, et al. An exploratory double-blind, randomized clinical trial with selisistat, a SirT1 inhibitor, in patients with Huntington’s disease. Br J Clin Pharmacol. 2015 Mar;79(3):465–76.

Napper AD, Hixon J, McDonagh T, Keavey K, Pons J-F, Barker J, et al. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J Med Chem. 2005 Dec 15;48(25):8045–54.

Gertz M, Fischer F, Nguyen GTT, Lakshminarasimhan M, Schutkowski M, Weyand M, et al. Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism. Proc Natl Acad Sci. 2013 Jul 23;110(30):E2772–81.

Sanders BD, Jackson B, Brent M, Taylor AM, Dang W, Berger SL, et al. Identification and characterization of novel sirtuin inhibitor scaffolds. Bioorg Med Chem. 2009 Oct 1;17(19):7031–41.

Wang J, Zang W, Liu J, Zheng W. Bivalent SIRT1 inhibitors. Bioorg Med Chem Lett. 2017 Jan 15;27(2):180–6.

Rumpf T, Schiedel M, Karaman B, Roessler C, North BJ, Lehotzky A, et al. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Nat Commun. 2015 Feb 12;6(1):6263.

Yang L-L, Xu W, Yan J, Su H-L, Yuan C, Li C, et al. Crystallographic and SAR analyses reveal the high requirements needed to selectively and potently inhibit SIRT2 deacetylase and decanoylase. MedChemComm. 2019 Jan 23;10(1):164–8.

Yang L-L, Wang H-L, Zhong L, Yuan C, Liu S-Y, Yu Z-J, et al. X-ray crystal structure guided discovery of new selective, substrate-mimicking sirtuin 2 inhibitors that exhibit activities against non-small cell lung cancer cells. Eur J Med Chem. 2018 Jul 15;155:806–23.

Schiedel M, Herp D, Hammelmann S, Swyter S, Lehotzky A, Robaa D, et al. Chemically Induced Degradation of Sirtuin 2 (Sirt2) by a Proteolysis Targeting Chimera (PROTAC) Based on Sirtuin Rearranging Ligands (SirReals). J Med Chem. 2018 Jan 25;61(2):482–91.

Sundriyal S, Moniot S, Mahmud Z, Yao S, Di Fruscia P, Reynolds CR, et al. Thienopyrimidinone Based Sirtuin-2 (SIRT2)-Selective Inhibitors Bind in the Ligand Induced Selectivity Pocket. J Med Chem. 2017 Mar 9;60(5):1928–45.

Suzuki T, Khan MN, Sawada H, Imai E, Itoh Y, Yamatsuta K, et al. Design, synthesis, and biological activity of a novel series of human sirtuin-2-selective inhibitors. J Med Chem. 2012 Jun 28;55(12):5760-73.

Mellini P, Itoh Y, Tsumoto H, Li Y, Suzuki M, Tokuda N, et al. Potent mechanism-based sirtuin-2-selective inhibition by an in situ-generated occupant of the substrate-binding site, “selectivity pocket” and NAD+-binding site. Chem Sci. 2017 Aug 21;8(9):6400–8.

Kudo N, Ito A, Arata M, Nakata A, Yoshida M. Identification of a novel small molecule that inhibits deacetylase but not defatty-acylase reaction catalysed by SIRT2. Philos Trans R Soc B Biol Sci. 2018 Jun 5;373(1748):20170070.

Jing H, Hu J, He B, Negron Abril YL, Stupinski J, Weiser K, et al. A SIRT2-selective inhibitor promotes c-Myc oncoprotein degradation and exhibits broad anticancer activity. Cancer Cell. 2016 Mar 14;29(3):297–310.

Nielsen AL, Rajabi N, Kudo N, Lundø K, Moreno-Yruela C, Bæk M, et al. Mechanism-based inhibitors of SIRT2: structure–activity relationship, X-ray structures, target engagement, regulation of α-tubulin acetylation and inhibition of breast cancer cell migration. RSC Chem Biol [Internet]. 2021 Jan 14 [cited 2021 Jan 26]. Available from:

https://pubs.rsc.org/en/content/articlelanding/2021/cb/d0cb00036a

Nguyen GTT, Schaefer S, Gertz M, Weyand M, Steegborn C. Structures of human sirtuin 3 complexes with ADP-ribose and with carba-NAD+ and SRT1720: binding details and inhibition mechanism. Acta Crystallogr D Biol Crystallogr. 2013 Aug;69(Pt 8):1423–32.

Li M, Chiang Y-L, Lyssiotis CA, Teater MR, Hong JY, Shen H, et al. Non-oncogene Addiction to SIRT3 Plays a Critical Role in Lymphomagenesis. Cancer Cell. 2019 Jun 10;35(6):916-931.e9.

Chen B, Wang J, Huang Y, Zheng W. Human SIRT3 tripeptidic inhibitors containing N(ε)-thioacetyl-lysine. Bioorg Med Chem Lett. 2015 Sep 1;25(17):3481–7.

Pannek M, Simic Z, Fuszard M, Meleshin M, Rotili D, Mai A, et al. Crystal structures of the mitochondrial deacylase Sirtuin 4 reveal isoform-specific acyl recognition and regulation features. Nat Commun. 2017 Nov 15;8(1):1513.

Li Y, Zhao Y, Cao Z, Wang J, Liu T, Li Y, et al. Development of a mitochondrial sirtuin 4 FRET assay based on its activity for removing 3-hydroxy-3-methylglutaryl (HMG) modification. RSC Adv. 2021 Jan 11;11(5):2677–81.

Rajabi N, Auth M, Troelsen KR, Pannek M, Bhatt DP, Fontenas M, et al. Mechanism-based Inhibitors of the Human Sirtuin 5 Deacylase: Structure–Activity Relationship, Biostructural, and Kinetic Insight. Angew Chem Int Ed Engl. 2017 Nov 20;56(47):14836–41.

Kalbas D, Liebscher S, Nowak T, Meleshin M, Pannek M, Popp C, et al. Potent and Selective Inhibitors of Human Sirtuin 5. J Med Chem. 2018 Mar 22;61(6):2460–71.

Parenti MD, Grozio A, Bauer I, Galeno L, Damonte P, Millo E, et al. Discovery of novel and selective SIRT6 inhibitors. J Med Chem. 2014 Jun 12;57(11):4796–804.

Damonte P, Sociali G, Parenti MD, Soncini D, Bauer I, Boero S, et al. SIRT6 inhibitors with salicylate-like structure show immunosuppressive and chemosensitizing effects. Bioorg Med Chem. 2017 Oct 15;25(20):5849–58.

You W, Steegborn C. Structural Basis of Sirtuin 6 Inhibition by the Hydroxamate Trichostatin A: Implications for Protein Deacylase Drug Development. J Med Chem. 2018 Dec 13;61(23):10922–8.

Rahnasto-Rilla M, Tyni J, Huovinen M, Jarho E, Kulikowicz T, Ravichandran S, et al. Natural polyphenols as sirtuin 6 modulators. Sci Rep. 2018 Mar 7;8(1):4163.

You W, Zheng W, Weiss S, Chua KF, Steegborn C. Structural basis for the activation and inhibition of Sirtuin 6 by quercetin and its derivatives. Sci Rep. 2019 Dec 16;9(1):19176.

He B, Hu J, Zhang X, Lin H. Thiomyristoyl Peptides as Cell-Permeable Sirt6 Inhibitors. Org Biomol Chem. 2014 Oct 14;12(38):7498.

Li S, Wu B, Zheng W. Cyclic tripeptide-based potent human SIRT7 inhibitors. Bioorg Med Chem Lett. 2019 Feb 1;29(3):461–5.

Kim J-H, Kim D, Cho SJ, Jung K-Y, Kim J-H, Lee JM, et al. Identification of a novel SIRT7 inhibitor as anticancer drug candidate. Biochem Biophys Res Commun. 2019 Jan 8;508(2):451–7.

Chen I-C, Sethy B, Liou J-P. Recent Update of HDAC Inhibitors in Lymphoma. Front Cell Dev Biol. 2020;8:576391.

Published
2021/04/26
Section
Review articles